The appropriate distribution for this question is Poisson distribution.
P(X=k)=λk×e−λk!P(X≥20)=1−P(X<20)=1−∑k=019P(λ,k)P(X=k) = \frac{λ^k \times e^{-λ}}{k!} \\ P(X≥20) = 1 -P(X<20) \\ = 1 - \sum^{19}_{k=0}P(λ,k)P(X=k)=k!λk×e−λP(X≥20)=1−P(X<20)=1−∑k=019P(λ,k)
Mean λ=13
By Excel function
P(X<20) = POISSON(19,13,1)
= 0.9573
P(X≥20) = 1 -0.9573 = 0.0427
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments