Question #213480

A continuous random variable M has a pdf given by f(m)={k(1-m/10)for m<or equal to 10

{0,elsewhere

find the value of the constant k,the mean and the variance of x


1
Expert's answer
2021-07-15T05:32:38-0400
f(m)dm=010k(1m10)dm\displaystyle\int_{-\infin}^{\infin}f(m)dm=\displaystyle\int_{0}^{10}k(1-\dfrac{m}{10})dm

=k[mm220]100=5k=1=k[m-\dfrac{m^2}{20}]\begin{matrix} 10 \\ 0 \end{matrix}=5k=1

k=15k=\dfrac{1}{5}

mean=μ=E[M]=mf(m)dmmean=\mu=E[M]=\displaystyle\int_{-\infin}^{\infin}mf(m)dm

=01015m(1m10)dm=[m210m3150]100=103=\displaystyle\int_{0}^{10}\dfrac{1}{5}m(1-\dfrac{m}{10})dm=[\dfrac{m^2}{10}-\dfrac{m^3}{150}]\begin{matrix} 10 \\ 0 \end{matrix}=\dfrac{10}{3}


E[M2]=m2f(m)dm=01015m2(1m10)dmE[M^2]=\displaystyle\int_{-\infin}^{\infin}m^2f(m)dm=\displaystyle\int_{0}^{10}\dfrac{1}{5}m^2(1-\dfrac{m}{10})dm

=[m315m4200]100=503=[\dfrac{m^3}{15}-\dfrac{m^4}{200}]\begin{matrix} 10 \\ 0 \end{matrix}=\dfrac{50}{3}


Var(M)=E[M2](E[M])2Var(M)=E[M^2]-(E[M])^2

=503(103)2=509=\dfrac{50}{3}-(\dfrac{10}{3})^2=\dfrac{50}{9}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS