A continuous random variable M has a pdf given by f(m)={k(1-m/10)for m<or equal to 10
{0,elsewhere
find the value of the constant k,the mean and the variance of x
"=k[m-\\dfrac{m^2}{20}]\\begin{matrix}\n 10 \\\\\n 0\n\\end{matrix}=5k=1"
"k=\\dfrac{1}{5}"
"mean=\\mu=E[M]=\\displaystyle\\int_{-\\infin}^{\\infin}mf(m)dm"
"=\\displaystyle\\int_{0}^{10}\\dfrac{1}{5}m(1-\\dfrac{m}{10})dm=[\\dfrac{m^2}{10}-\\dfrac{m^3}{150}]\\begin{matrix}\n 10 \\\\\n 0\n\\end{matrix}=\\dfrac{10}{3}"
"=[\\dfrac{m^3}{15}-\\dfrac{m^4}{200}]\\begin{matrix}\n 10 \\\\\n 0\n\\end{matrix}=\\dfrac{50}{3}"
"=\\dfrac{50}{3}-(\\dfrac{10}{3})^2=\\dfrac{50}{9}"
Comments
Leave a comment