Question #213477

The pdf of a continuous random variable R is given by f(r)={kr for 0<x<4 both inclusive

{0,elsewhere

a)determine c hence compute p(10<r<2)both inclusive, E(r) and var(r)


1
Expert's answer
2021-07-16T13:31:43-0400

Solution:

(a): We know that abf(x)dx=1\int_a^bf(x)dx=1

04(kr)dr=1\int_0^4(kr)dr=1

[kr2/2]04=112×[16k]=18k=1k=18\Rightarrow [kr^2/2]_0^4=1 \\ \Rightarrow \dfrac12\times [16k]=1 \\ \Rightarrow 8k=1 \\ \Rightarrow k=\dfrac18

(b):

So, f(x)=r8f(x)=\dfrac r8

Now, P(10r2)=P(10r<0)+P(0r2)P(-10\le r\le2)=P(-10\le r<0)+P(0\le r\le 2)

=0+02(r8)dr=r21602=14=0+\int_0^2(\dfrac r8)dr \\=\dfrac{r^2}{16}|_0^2 \\=\dfrac14

Next, E(r)=04r(r8)dr=04(r28)drE(r)=\int_0^4r(\dfrac r8)dr=\int_0^4(\dfrac {r^2}8)dr

=r32404=64240=83=\dfrac{r^3}{24}|_0^4 \\=\dfrac{64}{24}-0 \\=\dfrac 83

E(r2)=04r2(r8)dr=04(r38)dr=r43204=16×16320=8E(r^2)=\int_0^4r^2(\dfrac r8)dr=\int_0^4(\dfrac {r^3}8)dr \\ =\dfrac{r^4}{32}|_0^4 \\=\dfrac{16\times 16}{32}-0 \\=8

Now, Var(r)=E(r2)[E(r)]2=8(83)2=89Var(r)=E(r^2)-[E(r)]^2=8-(\dfrac83)^2=\dfrac89


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS