The pdf of a continuous random variable R is given by f(r)={kr for 0<x<4 both inclusive
{0,elsewhere
a)determine c hence compute p(10<r<2)both inclusive, E(r) and var(r)
Solution:
(a): We know that "\\int_a^bf(x)dx=1"
"\\int_0^4(kr)dr=1"
"\\Rightarrow [kr^2\/2]_0^4=1\n\\\\ \\Rightarrow \\dfrac12\\times [16k]=1\n\\\\ \\Rightarrow 8k=1\n\\\\ \\Rightarrow k=\\dfrac18"
(b):
So, "f(x)=\\dfrac r8"
Now, "P(-10\\le r\\le2)=P(-10\\le r<0)+P(0\\le r\\le 2)"
"=0+\\int_0^2(\\dfrac r8)dr\n\\\\=\\dfrac{r^2}{16}|_0^2\n\\\\=\\dfrac14"
Next, "E(r)=\\int_0^4r(\\dfrac r8)dr=\\int_0^4(\\dfrac {r^2}8)dr"
"=\\dfrac{r^3}{24}|_0^4\n\\\\=\\dfrac{64}{24}-0\n\\\\=\\dfrac 83"
"E(r^2)=\\int_0^4r^2(\\dfrac r8)dr=\\int_0^4(\\dfrac {r^3}8)dr\n\\\\ =\\dfrac{r^4}{32}|_0^4\n\\\\=\\dfrac{16\\times 16}{32}-0\n\\\\=8"
Now, "Var(r)=E(r^2)-[E(r)]^2=8-(\\dfrac83)^2=\\dfrac89"
Comments
Leave a comment