Solution:
(a): We know that ∫abf(x)dx=1
∫04(kr)dr=1
⇒[kr2/2]04=1⇒21×[16k]=1⇒8k=1⇒k=81
(b):
So, f(x)=8r
Now, P(−10≤r≤2)=P(−10≤r<0)+P(0≤r≤2)
=0+∫02(8r)dr=16r2∣02=41
Next, E(r)=∫04r(8r)dr=∫04(8r2)dr
=24r3∣04=2464−0=38
E(r2)=∫04r2(8r)dr=∫04(8r3)dr=32r4∣04=3216×16−0=8
Now, Var(r)=E(r2)−[E(r)]2=8−(38)2=98
Comments