Question #213474

A fair six sided die has "1" on the face ,"2" on two of its faces and "3".on the remaining three faces. The die is rolled twice. If T is the total score write down the probability distribution of T hence determine

a) the probability that T is more than 4

b)The mean and the variance of T


1
Expert's answer
2021-07-14T17:19:07-0400


Total number of outcomes =6×6=36= 6 \times 6 = 36

P=136P= \frac{1}{36}

a) P(T>4) = P(T=5) +P(T=5)

12 times T=5

9 times T=6

P(T>4)=1236+936=12+936=2136=712P(T>4) = \frac{12}{36} + \frac{9}{36} = \frac{12+9}{36}=\frac{21}{36} = \frac{7}{12}

b)

P(T=2)=136P(T=3)=436P(T=4)=1036P(T=5)=1236P(T=6)=936P(T=2) = \frac{1}{36} \\ P(T=3) = \frac{4}{36} \\ P(T=4) = \frac{10}{36} \\ P(T=5) = \frac{12}{36} \\ P(T=6) = \frac{9}{36}

The mean

E(T)=T=26T×P(T)E(T)=2×136+3×436+4×1036+5×1236+6×936=2+12+40+60+5436=4.66E(T2)=T2×P(T)E(T2)=22×136+32×436+42×1036+52×1236+62×936=4+36+160+300+32436=22.88E(T) = \sum^6_{T=2} T \times P(T) \\ E(T) = 2 \times \frac{1}{36} + 3 \times \frac{4}{36} + 4 \times \frac{10}{36} + 5 \times \frac{12}{36} + 6 \times \frac{9}{36} \\ = \frac{2 + 12 +40 + 60 + 54}{36} = 4.66 \\ E(T^2) = T^2 \times P(T) \\ E(T^2) = 2^2 \times \frac{1}{36} + 3^2 \times \frac{4}{36} + 4^2 \times \frac{10}{36} + 5^2 \times \frac{12}{36} + 6^2 \times \frac{9}{36} \\ = \frac{4+36+160+300+324}{36} = 22.88

The variance

V(T)=E(T2)(E(T))2V(T)=22.88(4.66)2=1.13V(T) = E(T^2) -(E(T))^2 \\ V(T) = 22.88 - (4.66)^2 = 1.13


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS