A fair six sided die has "1" on the face ,"2" on two of its faces and "3".on the remaining three faces. The die is rolled twice. If T is the total score write down the probability distribution of T hence determine
a) the probability that T is more than 4
b)The mean and the variance of T
Total number of outcomes "= 6 \\times 6 = 36"
"P= \\frac{1}{36}"
a) P(T>4) = P(T=5) +P(T=5)
12 times T=5
9 times T=6
"P(T>4) = \\frac{12}{36} + \\frac{9}{36} = \\frac{12+9}{36}=\\frac{21}{36} = \\frac{7}{12}"
b)
"P(T=2) = \\frac{1}{36} \\\\\n\nP(T=3) = \\frac{4}{36} \\\\\n\nP(T=4) = \\frac{10}{36} \\\\\n\nP(T=5) = \\frac{12}{36} \\\\\n\nP(T=6) = \\frac{9}{36}"
The mean
"E(T) = \\sum^6_{T=2} T \\times P(T) \\\\\n\nE(T) = 2 \\times \\frac{1}{36} + 3 \\times \\frac{4}{36} + 4 \\times \\frac{10}{36} + 5 \\times \\frac{12}{36} + 6 \\times \\frac{9}{36} \\\\\n\n= \\frac{2 + 12 +40 + 60 + 54}{36} = 4.66 \\\\\n\nE(T^2) = T^2 \\times P(T) \\\\\n\nE(T^2) = 2^2 \\times \\frac{1}{36} + 3^2 \\times \\frac{4}{36} + 4^2 \\times \\frac{10}{36} + 5^2 \\times \\frac{12}{36} + 6^2 \\times \\frac{9}{36} \\\\\n\n= \\frac{4+36+160+300+324}{36} = 22.88"
The variance
"V(T) = E(T^2) -(E(T))^2 \\\\\n\nV(T) = 22.88 - (4.66)^2 = 1.13"
Comments
Leave a comment