Question #213473

A team of 3 is to be chosen from 4girls and 6 boys in the team find the probability distribution distribution of x hence determine the mean and the variance of x


1
Expert's answer
2021-07-19T13:29:40-0400

Let x will be the random variable “the number of girls in the team”.

Let y will be the random variable “the number of boy in the team”.

x=0,1,2,3

Total persons = 4+6 =10

Sample space

S=10!3!(103)!=120  waysS = \frac{10!}{3!(10-3)!}=120 \;ways

x=0 (only boys will be in a team)

n(x=0,y=3)=4!0!(40)!×6!3!(63)!=1×20=20  waysP(X=0)=20120=0.1666n(x=0, y=3) = \frac{4!}{0!(4-0)!} \times \frac{6!}{3!(6-3)!} = 1 \times 20 =20 \;ways \\ P(X=0) = \frac{20}{120} = 0.1666

x=1 (one girl and two boys will be in a team)

n(x=1,y=2)=4!1!(41)!×6!2!(62)!=4×15=60  waysP(x=1)=60120=0.5n(x=1,y=2) = \frac{4!}{1!(4-1)!} \times \frac{6!}{2!(6-2)!} = 4 \times 15 =60 \;ways \\ P(x=1) = \frac{60}{120} = 0.5

x=2 (two girls and one boy will be in a team)

n(x=2,y=1)=4!2!(42)!×6!1!(61)!=6×6=36  waysP(x=2)=36120=0.3n(x=2,y=1) = \frac{4!}{2!(4-2)!} \times \frac{6!}{1!(6-1)!} = 6 \times 6 =36 \;ways \\ P(x=2) = \frac{36}{120} = 0.3

x=3 (only three girls will be in a team)

n(x=3,y=0)=4!3!(43)!×6!0!(60)!=4×1=4  waysP(x=3)=4120=0.0333n(x=3,y=0) = \frac{4!}{3!(4-3)!} \times \frac{6!}{0!(6-0)!} = 4 \times 1 =4 \;ways \\ P(x=3) = \frac{4}{120} = 0.0333

Probability distribution:



The mean

μ=x×P(x)μ=0×0.1666+1×0.5+2×0.3+3×0.0333=1.1999x2×P(x)=02×0.1666+12×0.5+22×0.3+32×0.0333=0+0.5+1.2+0.2997=1.9997\mu = \sum x \times P(x) \\ \mu = 0 \times 0.1666 + 1 \times 0.5 + 2 \times 0.3 + 3 \times 0.0333 = 1.1999 \\ \sum x^2 \times P(x) = 0^2 \times 0.1666+ 1^2 \times 0.5 + 2^2 \times 0.3 + 3^2 \times 0.0333 \\ = 0 + 0.5+ 1.2 + 0.2997 =1.9997

The variance

σ2=x2×P(x)μ2=1.9997(1.1999)2=1.99971.4397=0.56\sigma^2 = \sum x^2 \times P(x) -\mu^2 \\ = 1.9997 -(1.1999)^2 \\ = 1.9997 -1.4397 \\ =0.56


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS