1. 1=∫f(t)dt=0∫1k(1−t)dt=k(t−t2/2)∣01=k/2
Therefore, k=2.
The CDF (cumulative distribution function) is F(x)=−∞∫xf(t)dt.
F(x)=0, if x<0;
F(x)=1, if x>1;
F(x)=0∫x2(1−t)dt=(2t−t2)∣0x=2x−x2, if x∈[0,1].
The median of distribution is a such x, that F(x)=1/2.
2x−x2=1/2
(x−1)2=1/2
x=x1=1−1/2 , since the other root x2=1+1/2>1 and F(x2)=1
2. (a) f(x)=1/3, if X∈[0,1]∪[2,4] and f(x)=0 elsewhere.
The CDF is F(x)=−∞∫xf(t)dt.
F(x)=0, if x≤0;
F(x)=0∫x31dt=x/3, if x∈[0,1];
F(x)=1/3+0∫x0dt=1/3, if x∈[1,2];
F(x)=31+2∫x31dt=31+3x−2=3x+1, if x∈[2,4];
F(x)=1, if x>4.
(b) Given the pdf f(x)=x/2 , if 0≤x≤1
f(x)=1/2 , if 1≤x≤2
f(x)=(3−x)/2 if 2≤x≤3
is not a pdf of a random variable, since
∫f(t)dt=0∫12tdt+1∫221dt+2∫323−tdt=41+21+41
The CDF (cumulative distribution function) is F(x)=−∞∫xf(t)dt.
F(x)=0, if x≤0;
F(x)=0∫x2tdt=x2/4, if x∈[0,1];
F(x)=41+1∫x21dt=41+2x−1=42x−1, if x∈[1,2];
F(x)=43+2∫x23−tdt=43+21(x−2)−4(x−2)2=4−x2+6x−5, if x∈[2,3];
F(x)=1, if x>3.
3. If the cdf of a random variable Y is given by F(y)=1−9/y2 for y≥3 and F(x)=0 for y<3, then P(Y<5)=F(5)=1−9/52=0.64.
The PDF equals to f(y)=F′(y). Hence
f(y)=18/y3, for y≥3
f(y)=0, for any other value of y.
Comments
Leave a comment