Answer to Question #213459 in Statistics and Probability for jonny

Question #213459

1.The pdf of a random variable x is given by f(x)={k(1-x),0<x<1 both inclusive

{0, elsewhere

Find the value of the constant k,the cdf of x and the value of m such that G(x)=1/2

2.Find the cdf of a random variable y where the pdf is given by

(a)f(x)={1/3,0<X<1 both inclusive

{1/3,2<x<4 both inclusive

{0,elsewhere

(b)f(x)={x/2,0<x<1 both inclusive

{1/2,1<x<2 both inclusive

{(3-x)/2,2<x<3 both inclusive

3.If the cdf of a random variable y is given by F(X)=1-9/y2 for y>or equal to3

and F(x)=0 for y<3 find the P(X<or equal to 5),p(x>8) and the pdf of x.



1
Expert's answer
2021-07-12T13:18:44-0400

1. 1=f(t)dt=01k(1t)dt=k(tt2/2)01=k/21=\int f(t)dt=\int\limits_{0}^1k(1-t)dt=k(t-t^2/2)|_0^1=k/2

Therefore, k=2.

The CDF (cumulative distribution function) is F(x)=xf(t)dtF(x) =\int\limits_{-\infty}^x f(t)dt.

F(x)=0F(x)=0, if x<0x<0;

F(x)=1F(x)=1, if x>1x>1;

F(x)=0x2(1t)dt=(2tt2)0x=2xx2F(x)=\int\limits_{0}^x 2(1-t)dt=(2t-t^2)|_0^x=2x-x^2, if x[0,1]x\in[0,1].

The median of distribution is a such x, that F(x)=1/2F(x)=1/2.

2xx2=1/22x-x^2=1/2

(x1)2=1/2(x-1)^2=1/2

x=x1=11/2x=x_1=1-1/\sqrt{2} , since the other root x2=1+1/2>1x_2=1+1/\sqrt{2}>1 and F(x2)=1F(x_2)=1


2. (a) f(x)=1/3f(x)=1/3, if X[0,1][2,4]X\in[0,1]\cup [2,4] and f(x)=0f(x)=0 elsewhere.

The CDF is F(x)=xf(t)dtF(x) =\int\limits_{-\infty}^x f(t)dt.

F(x)=0F(x)=0, if x0x\leq 0;

F(x)=0x13dt=x/3F(x)=\int\limits_{0}^{x}\frac{1}{3} dt=x/3, if x[0,1]x\in[0,1];

F(x)=1/3+0x0dt=1/3F(x)=1/3+\int\limits_{0}^{x}0 dt=1/3, if x[1,2]x\in[1,2];

F(x)=13+2x13dt=13+x23=x+13F(x)=\frac{1}{3}+\int\limits_{2}^{x}\frac{1}{3} dt=\frac{1}{3}+\frac{x-2}{3}=\frac{x+1}{3}, if x[2,4]x\in[2,4];

F(x)=1F(x)=1, if x>4x>4.

(b) Given the pdf f(x)=x/2f(x)=x/2 , if 0x10\leq x\leq1

f(x)=1/2f(x)=1/2 , if 1x21\leq x\leq2

f(x)=(3x)/2f(x)=(3-x)/2 if 2x32\leq x\leq 3

is not a pdf of a random variable, since

f(t)dt=01t2dt+1212dt+233t2dt=14+12+14\int f(t)dt=\int\limits_{0}^{1}\frac{t}{2}dt+\int\limits_{1}^{2}\frac{1}{2}dt+\int\limits_{2}^{3}\frac{3-t}{2}dt=\frac{1}{4}+\frac{1}{2}+\frac{1}{4}

The CDF (cumulative distribution function) is F(x)=xf(t)dtF(x) =\int\limits_{-\infty}^x f(t)dt.

F(x)=0F(x)=0, if x0x\leq 0;

F(x)=0xt2dt=x2/4F(x)=\int\limits_{0}^{x}\frac{t}{2} dt=x^2/4, if x[0,1]x\in[0,1];

F(x)=14+1x12dt=14+x12=2x14F(x)=\frac{1}{4}+\int\limits_{1}^{x}\frac{1}{2} dt=\frac{1}{4}+\frac{x-1}{2}=\frac{2x-1}{4}, if x[1,2]x\in[1,2];

F(x)=34+2x3t2dt=34+12(x2)(x2)24=x2+6x54F(x)=\frac{3}{4}+\int\limits_{2}^{x}\frac{3-t}{2} dt=\frac{3}{4}+\frac{1}{2}(x-2)-\frac{(x-2)^2}{4}=\frac{-x^2+6x-5}{4}, if x[2,3]x\in[2,3];

F(x)=1F(x)=1, if x>3x>3.


3. If the cdf of a random variable Y is given by F(y)=19/y2F(y)=1-9/y^2 for y3y\geq 3 and F(x)=0F(x)=0 for y<3y<3, then P(Y<5)=F(5)=19/52=0.64P(Y<5)=F(5)=1-9/5^2=0.64.

The PDF equals to f(y)=F(y)f(y)=F'(y). Hence

f(y)=18/y3f(y)=18/y^3, for y3y\geq 3

f(y)=0f(y)=0, for any other value of y.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment