1.
f(x)=x(k(k+1)2)≥0,x=0,1,2,...
x=0∑kf(x)=x=0∑kx(k(k+1)2)
=k(k+1)2(2k(k+1))=1
f(x)=x(k(k+1)2)≥0,x=0,1,2,... can serve as a pmf of a random variable x.
2.
A geometric random variable X with parameter p has probability mass function
f(N)=p(1−p)N,N=0,1,2,.... Given p=0.5
f(N)=0.5(1−0.5)N,N=0,1,2,....
f(N)=0.5N+1,N=0,1,2,....
3.
k(1)+k(2)+k(3)+k(4)+k(5)+k(6)=1
k=211
P(X<4)=211(1+2+3)=72
P(3<X<6)=211(4+5)=73
4.
k+2k+3k+4k+5k+6k=1
k=211
P(X=1)=211
P(X=2)=212
P(X=3)=71
P(X=4)=214
P(X=5)=215
P(X=6)=72 5.
xp(x)11/641/691/6161/6251/6361/6
p(X<15)=61+61+61=21
p(3<X<30)=61+61+61+61=32
6.A discrete random variable is an rv whose possible values either constitute a
finite set or else can be listed in an infinite sequence in which there is a first
element, a second element, and so on (“countably” infinite).
A random variable the number of hours observed when two dice are rolled together once is
countable number of possible values.
Therefore this random variable is discrete.
7.
1.
c+2c+3c+4c+5c=1
c=151 2.
x=0∑kcx2=6ck(k+1)(2k+1)=1
c=k(k+1)(2k+1)1
3.
x=0∑∞c(61)x=1−61c=56c=1
c=65
4.
x=0∑∞c(2)−x=x=0∑∞c(21)x=1−21c=2c=1
c=21
Comments