Question #213466

A discrete random variable x ha s the probability distribution f(m)

f(m)={m/36,m=1,2,3,......8

{ 0,elsewhere

Find the mean and variance of M


1
Expert's answer
2021-07-12T17:31:48-0400
m12345678p(m)136236336436536636736836\begin{matrix} m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\\\ p(m) & \dfrac{1}{36} & \dfrac{2}{36} & \dfrac{3}{36} & \dfrac{4}{36} & \dfrac{5}{36} & \dfrac{6}{36} & \dfrac{7}{36} & \dfrac{8}{36} \end{matrix}


mean=E(m)=1(136)+2(236)+3(336)+4(436)mean=E(m)=1(\dfrac{1}{36})+2(\dfrac{2}{36})+3(\dfrac{3}{36})+4(\dfrac{4}{36})

+5(536)+6(636)+7(736)+8(836)=173+5(\dfrac{5}{36})+6(\dfrac{6}{36})+7(\dfrac{7}{36})+8(\dfrac{8}{36})=\dfrac{17}{3}



E(m2)=12(136)+22(236)+32(336)+42(436)E(m^2)=1^2(\dfrac{1}{36})+2^2(\dfrac{2}{36})+3^2(\dfrac{3}{36})+4^2(\dfrac{4}{36})

+52(536)+62(636)+72(736)+82(836)=36+5^2(\dfrac{5}{36})+6^2(\dfrac{6}{36})+7^2(\dfrac{7}{36})+8^2(\dfrac{8}{36})=36


Var(m)=σ2=E(m2)(E(m))2Var(m)=\sigma^2=E(m^2)-(E(m))^2

=36(173)2=359=36-(\dfrac{17}{3})^2=\dfrac{35}{9}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS