A continuous random variable x has the pdf given by
f(x)={k(1-x) for 0<x<1 both inclusive
{o,elsewhere
find t,the value of the constant k. Also find the mean and the variance of x
"=k[x-\\dfrac{x^2}{2}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{1}{2}k=1"
"k=2"
"mean=\\mu=E[X]=\\displaystyle\\int_{-\\infin}^{\\infin}xf(x)dx"
"=\\displaystyle\\int_{0}^{1}2x(1-x)dx=[x-\\dfrac{2x^3}{3}]\\begin{matrix}\n 1\\\\\n 0\n\\end{matrix}=\\dfrac{1}{3}"
"=[\\dfrac{2x^3}{3}-\\dfrac{x^4}{2}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{1}{6}"
"=\\dfrac{1}{6}-(\\dfrac{1}{3})^2=\\dfrac{1}{18}"
Comments
Leave a comment