Solution :
We know that ∫ x f ( x ) = 1 \int_xf(x)=1 ∫ x f ( x ) = 1
⇒ ∫ 0 3 k ( 3 + 2 x − x 2 ) d x = 1 ⇒ ∫ 0 3 ( 3 k + 2 k x − k x 2 ) d x = 1 ⇒ [ 3 k x + k x 2 − k x 3 3 ] 0 3 = 1 ⇒ [ 9 k + 9 k − 9 k ] − [ 0 ] = 1 ⇒ 9 k = 1 ⇒ k = 1 9 \Rightarrow \int_0^3k(3+2x-x^2)dx=1
\\ \Rightarrow \int_0^3(3k+2kx-kx^2)dx=1
\\ \Rightarrow [3kx+kx^2-\dfrac{kx^3}{3}]_0^3=1
\\ \Rightarrow [9k+9k-9k]-[0]=1
\\ \Rightarrow 9k=1
\\ \Rightarrow k=\dfrac19 ⇒ ∫ 0 3 k ( 3 + 2 x − x 2 ) d x = 1 ⇒ ∫ 0 3 ( 3 k + 2 k x − k x 2 ) d x = 1 ⇒ [ 3 k x + k x 2 − 3 k x 3 ] 0 3 = 1 ⇒ [ 9 k + 9 k − 9 k ] − [ 0 ] = 1 ⇒ 9 k = 1 ⇒ k = 9 1
So, pdf is:
f(x)={1 9 \dfrac19 9 1 (3+2x-x2 ) if 0 ≤ x ≤ 3 0\le x\le3 0 ≤ x ≤ 3
{0 if x>3
Mean= E [ X ] = ∫ 0 3 x . 1 9 . ( 3 + 2 x − x 2 ) d x =E[X]=\int_0^3x.\dfrac19.(3+2x-x^2)dx = E [ X ] = ∫ 0 3 x . 9 1 . ( 3 + 2 x − x 2 ) d x
= 1 9 ∫ 0 3 ( 3 x + 2 x 2 − x 3 ) d x = 1 9 [ 3 x 2 2 + 2 x 3 3 − x 4 4 ] 0 3 = 1 9 [ 27 2 + 18 − 81 4 − 0 ] = 5 4 =\dfrac19\int_0^3(3x+2x^2-x^3)dx
\\=\dfrac19[\dfrac{3x^2}{2}+\dfrac{2x^3}{3}-\dfrac{x^4}{4}]_0^3
\\=\dfrac{1}{9}[\dfrac{27}{2}+18-\dfrac{81}{4}-0]
\\=\dfrac54 = 9 1 ∫ 0 3 ( 3 x + 2 x 2 − x 3 ) d x = 9 1 [ 2 3 x 2 + 3 2 x 3 − 4 x 4 ] 0 3 = 9 1 [ 2 27 + 18 − 4 81 − 0 ] = 4 5
E [ X 2 ] = ∫ 0 3 x 2 . 1 9 . ( 3 + 2 x − x 2 ) d x = 1 9 ∫ 0 3 ( 3 x 2 + 2 x 3 − x 4 ) d x = 1 9 [ x 3 + x 4 2 − x 5 5 ] 0 3 = 1 9 [ 27 + 81 2 − 243 5 − 0 ] = 21 10 E[X^2]=\int_0^3x^2.\dfrac19.(3+2x-x^2)dx
\\=\dfrac19\int_0^3(3x^2+2x^3-x^4)dx
\\=\dfrac19[x^3+\dfrac{x^4}{2}-\dfrac{x^5}{5}]_0^3
\\=\dfrac{1}{9}[27+\dfrac{81}{2}-\dfrac{243}{5}-0]
\\=\dfrac{21}{10} E [ X 2 ] = ∫ 0 3 x 2 . 9 1 . ( 3 + 2 x − x 2 ) d x = 9 1 ∫ 0 3 ( 3 x 2 + 2 x 3 − x 4 ) d x = 9 1 [ x 3 + 2 x 4 − 5 x 5 ] 0 3 = 9 1 [ 27 + 2 81 − 5 243 − 0 ] = 10 21
Variance= V a r [ X ] = E [ X 2 ] − ( E [ X ] ) 2 =Var[X]=E[X^2]-(E[X])^2 = Va r [ X ] = E [ X 2 ] − ( E [ X ] ) 2
= 21 10 − ( 5 4 ) 2 = 43 80 =\dfrac{21}{10}-(\dfrac54)^2=\dfrac{43}{80} = 10 21 − ( 4 5 ) 2 = 80 43
Standard deviation= S D [ X ] = 43 80 =SD[X]=\sqrt{\dfrac{43}{80}} = S D [ X ] = 80 43
Comments