Question #213484

An acher shoots an arrow on a target. The distance of the arrow from the center of the target is a random variable x,whose pdf is given by

f(x)={k(3+2x-x2) if x<or equal to 3

{0 if x>3

find the values of the constant k,also find the mean and standard deviation of X


1
Expert's answer
2021-07-21T11:24:41-0400

Solution:

We know that xf(x)=1\int_xf(x)=1

03k(3+2xx2)dx=103(3k+2kxkx2)dx=1[3kx+kx2kx33]03=1[9k+9k9k][0]=19k=1k=19\Rightarrow \int_0^3k(3+2x-x^2)dx=1 \\ \Rightarrow \int_0^3(3k+2kx-kx^2)dx=1 \\ \Rightarrow [3kx+kx^2-\dfrac{kx^3}{3}]_0^3=1 \\ \Rightarrow [9k+9k-9k]-[0]=1 \\ \Rightarrow 9k=1 \\ \Rightarrow k=\dfrac19

So, pdf is:

f(x)={19\dfrac19 (3+2x-x2) if 0x30\le x\le3

{0 if x>3

Mean=E[X]=03x.19.(3+2xx2)dx=E[X]=\int_0^3x.\dfrac19.(3+2x-x^2)dx

=1903(3x+2x2x3)dx=19[3x22+2x33x44]03=19[272+188140]=54=\dfrac19\int_0^3(3x+2x^2-x^3)dx \\=\dfrac19[\dfrac{3x^2}{2}+\dfrac{2x^3}{3}-\dfrac{x^4}{4}]_0^3 \\=\dfrac{1}{9}[\dfrac{27}{2}+18-\dfrac{81}{4}-0] \\=\dfrac54

E[X2]=03x2.19.(3+2xx2)dx=1903(3x2+2x3x4)dx=19[x3+x42x55]03=19[27+81224350]=2110E[X^2]=\int_0^3x^2.\dfrac19.(3+2x-x^2)dx \\=\dfrac19\int_0^3(3x^2+2x^3-x^4)dx \\=\dfrac19[x^3+\dfrac{x^4}{2}-\dfrac{x^5}{5}]_0^3 \\=\dfrac{1}{9}[27+\dfrac{81}{2}-\dfrac{243}{5}-0] \\=\dfrac{21}{10}

Variance=Var[X]=E[X2](E[X])2=Var[X]=E[X^2]-(E[X])^2

=2110(54)2=4380=\dfrac{21}{10}-(\dfrac54)^2=\dfrac{43}{80}

Standard deviation=SD[X]=4380=SD[X]=\sqrt{\dfrac{43}{80}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS