Solution:
We know that ∫xf(x)=1
⇒∫03k(3+2x−x2)dx=1⇒∫03(3k+2kx−kx2)dx=1⇒[3kx+kx2−3kx3]03=1⇒[9k+9k−9k]−[0]=1⇒9k=1⇒k=91
So, pdf is:
f(x)={91 (3+2x-x2) if 0≤x≤3
{0 if x>3
Mean=E[X]=∫03x.91.(3+2x−x2)dx
=91∫03(3x+2x2−x3)dx=91[23x2+32x3−4x4]03=91[227+18−481−0]=45
E[X2]=∫03x2.91.(3+2x−x2)dx=91∫03(3x2+2x3−x4)dx=91[x3+2x4−5x5]03=91[27+281−5243−0]=1021
Variance=Var[X]=E[X2]−(E[X])2
=1021−(45)2=8043
Standard deviation=SD[X]=8043
Comments