An acher shoots an arrow on a target. The distance of the arrow from the center of the target is a random variable x,whose pdf is given by
f(x)={k(3+2x-x2) if x<or equal to 3
{0 if x>3
find the values of the constant k,also find the mean and standard deviation of X
Solution:
We know that "\\int_xf(x)=1"
"\\Rightarrow \\int_0^3k(3+2x-x^2)dx=1\n\\\\ \\Rightarrow \\int_0^3(3k+2kx-kx^2)dx=1\n\\\\ \\Rightarrow [3kx+kx^2-\\dfrac{kx^3}{3}]_0^3=1\n\\\\ \\Rightarrow [9k+9k-9k]-[0]=1\n\\\\ \\Rightarrow 9k=1\n\\\\ \\Rightarrow k=\\dfrac19"
So, pdf is:
f(x)={"\\dfrac19" (3+2x-x2) if "0\\le x\\le3"
{0 if x>3
Mean"=E[X]=\\int_0^3x.\\dfrac19.(3+2x-x^2)dx"
"=\\dfrac19\\int_0^3(3x+2x^2-x^3)dx\n\\\\=\\dfrac19[\\dfrac{3x^2}{2}+\\dfrac{2x^3}{3}-\\dfrac{x^4}{4}]_0^3\n\\\\=\\dfrac{1}{9}[\\dfrac{27}{2}+18-\\dfrac{81}{4}-0]\n\\\\=\\dfrac54"
"E[X^2]=\\int_0^3x^2.\\dfrac19.(3+2x-x^2)dx\n\\\\=\\dfrac19\\int_0^3(3x^2+2x^3-x^4)dx\n\\\\=\\dfrac19[x^3+\\dfrac{x^4}{2}-\\dfrac{x^5}{5}]_0^3\n\\\\=\\dfrac{1}{9}[27+\\dfrac{81}{2}-\\dfrac{243}{5}-0]\n\\\\=\\dfrac{21}{10}"
Variance"=Var[X]=E[X^2]-(E[X])^2"
"=\\dfrac{21}{10}-(\\dfrac54)^2=\\dfrac{43}{80}"
Standard deviation"=SD[X]=\\sqrt{\\dfrac{43}{80}}"
Comments
Leave a comment