Question #213482

The lifetime of new engines T years has a continuous pdf f(t)={d/t2 if x>or equal1

{0,elsewhere

the value of the constant d,hence determine the mean and standard deviation T


1
Expert's answer
2021-07-16T11:56:17-0400


f(t)dt=1dt2dt\displaystyle\int_{-\infin}^{\infin}f(t)dt=\displaystyle\int_{1}^{\infin}\dfrac{d}{t^2}dt

=limx[dt]x1=d=1=\lim\limits_{x\to \infin}[-\dfrac{d}{t}]\begin{matrix} x \\ 1 \end{matrix}=d=1

k=1k=1

mean=μ=E[T]=tf(t)dtmean=\mu=E[T]=\displaystyle\int_{-\infin}^{\infin}tf(t)dt

=0t(1t2)dt=limx[lnt]x1==\displaystyle\int_{0}^{\infin}t(-\dfrac{1}{t^2})dt=\lim\limits_{x\to \infin}[-\ln t]\begin{matrix} x \\ 1 \end{matrix}=-\infin


E[T2]=t2f(t)dt=0t2(1t2)dtE[T^2]=\displaystyle\int_{-\infin}^{\infin}t^2f(t)dt=\displaystyle\int_{0}^{\infin}t^2(-\dfrac{1}{t^2})dt

=limx[t]x1==\lim\limits_{x\to \infin}[- t]\begin{matrix} x \\ 1 \end{matrix}=-\infin


Var(T)=E[T2](E[T])2=Var(T)=E[T^2]-(E[T])^2=-\infin


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS