Question #213486

A continuous random variable x has the pdf given by

f(x)={ e-x for x>0

{0,ellsewhere

Find the mean and the standard deviation of

a)x

b)y=e(3/4)x

1
Expert's answer
2021-07-19T07:22:21-0400

a)


E[X]=0xexdxE[X]=\displaystyle\int_{0}^{\infin}xe^{-x}dx

xexdx\int xe^{-x}dx

udv=uvvdu\int udv=uv-\int vdu

u=x,du=dxu=x, du=dx

dv=exdx,v=exdx=exdv=e^{-x}dx, v=\int e^{-x}dx=-e^{-x}

xexdx=xex+exdx=xexex+C1\int xe^{-x}dx=-xe^{-x}+\int e^{-x}dx=-xe^{-x}-e^{-x}+C_1


E[X]=0xexdx=limt0txexdxE[X]=\displaystyle\int_{0}^{\infin}xe^{-x}dx=\lim\limits_{t\to\infin}\displaystyle\int_{0}^{t}xe^{-x}dx

=limt[xexex]t0=00+0+1=1=\lim\limits_{t\to\infin}[-xe^{-x}-e^{-x}]\begin{matrix} t \\ 0 \end{matrix}=-0-0+0+1=1


E[X2]=0x2exdxE[X^2]=\displaystyle\int_{0}^{\infin}x^2e^{-x}dx

x2exdx\int x^2e^{-x}dx

udv=uvvdu\int udv=uv-\int vdu

u=x2,du=2xdxu=x^2, du=2xdx

dv=exdx,v=exdx=exdv=e^{-x}dx, v=\int e^{-x}dx=-e^{-x}

x2exdx=x2ex+2xexdx\int x^2e^{-x}dx=-x^2e^{-x}+2\int xe^{-x}dx

=x2ex2xex2ex+C2=-x^2e^{-x}-2xe^{-x}-2e^{-x}+C_2



E[X2]=0x2exdx=limt0tx2exdxE[X^2]=\displaystyle\int_{0}^{\infin}x^2e^{-x}dx=\lim\limits_{t\to\infin}\displaystyle\int_{0}^{t}x^2e^{-x}dx

=limt[x2ex2xex2ex]t0=\lim\limits_{t\to\infin}[-x^2e^{-x}-2xe^{-x}-2e^{-x}]\begin{matrix} t \\ 0 \end{matrix}

=000+0+0+2=2=-0-0-0+0+0+2=2

Var(X)=σ2=E[X2](E[X])2=2(1)2=1Var(X)=\sigma^2=E[X^2]-(E[X])^2=2-(1)^2=1

σ=σ2=2\sigma=\sqrt{\sigma^2}=\sqrt{2}


b)


E[Y]=0e(3/4)xexdx=limt0te(1/4)xdxE[Y]=\displaystyle\int_{0}^{\infin}e^{(3/4)x}e^{-x}dx=\lim\limits_{t\to\infin}\displaystyle\int_{0}^{t}e^{(-1/4)x}dx=limt[4e(1/4)x]t0=0+4=4=\lim\limits_{t\to\infin}[-4e^{(-1/4)x}]\begin{matrix} t \\ 0 \end{matrix}=-0+4=4

E[Y2]=0e2(3/4)xexdx=limt0te(1/2)xdxE[Y^2]=\displaystyle\int_{0}^{\infin}e^{2(3/4)x}e^{-x}dx=\lim\limits_{t\to\infin}\displaystyle\int_{0}^{t}e^{(1/2)x}dx

=limt[2e(1/2)x]t0==\lim\limits_{t\to\infin}[2e^{(1/2)x}]\begin{matrix} t \\ 0 \end{matrix}=\infin


Var(Y)=σ2=E[Y2](E[Y])2=Var(Y)=\sigma^2=E[Y^2]-(E[Y])^2=\infin


σ=σ2=\sigma=\sqrt{\sigma^2}=\infin


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS