A continuous random variable x has the pdf given by
f(x)={ e-x for x>0
{0,ellsewhere
Find the mean and the standard deviation of
a)x
b)y=e(3/4)x
a)
"\\int xe^{-x}dx"
"\\int udv=uv-\\int vdu"
"u=x, du=dx"
"dv=e^{-x}dx, v=\\int e^{-x}dx=-e^{-x}"
"\\int xe^{-x}dx=-xe^{-x}+\\int e^{-x}dx=-xe^{-x}-e^{-x}+C_1"
"=\\lim\\limits_{t\\to\\infin}[-xe^{-x}-e^{-x}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}=-0-0+0+1=1"
"\\int x^2e^{-x}dx"
"\\int udv=uv-\\int vdu"
"u=x^2, du=2xdx"
"dv=e^{-x}dx, v=\\int e^{-x}dx=-e^{-x}"
"\\int x^2e^{-x}dx=-x^2e^{-x}+2\\int xe^{-x}dx"
"=-x^2e^{-x}-2xe^{-x}-2e^{-x}+C_2"
"=\\lim\\limits_{t\\to\\infin}[-x^2e^{-x}-2xe^{-x}-2e^{-x}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}"
"=-0-0-0+0+0+2=2"
"Var(X)=\\sigma^2=E[X^2]-(E[X])^2=2-(1)^2=1"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{2}"
b)
"E[Y^2]=\\displaystyle\\int_{0}^{\\infin}e^{2(3\/4)x}e^{-x}dx=\\lim\\limits_{t\\to\\infin}\\displaystyle\\int_{0}^{t}e^{(1\/2)x}dx"
"=\\lim\\limits_{t\\to\\infin}[2e^{(1\/2)x}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}=\\infin"
Comments
Leave a comment