Question #119198
Given the matrices (Each matrices are inside a [ ] )
A= 3 0 , B= 4 -1 , C= 1 4 2 , D= 1 5 2 , E= 0 1 3
-1 2 0 2 3 1 5 -1 0 1 -1 1 2
1 1 3 2 4 4 1 3

1.-4C^2
2.(E-D)^T
3. A(BC)
4. (B^T B)C
5. 3B-AB
1
Expert's answer
2020-06-02T17:08:09-0400


A= [301211]\begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} , B = [4102]\begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}

C = [142315]\begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \\ \end{bmatrix} , D = [152101324]\begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix} ,

E= [013112413]\begin{bmatrix} 0 & 1 & 3 \\ -1 & 1 & 2 \\ 4 & 1 & 3 \end{bmatrix}

1. Since C is not a square matrix , C² doesn't exist. Hence -4C² doesn't exist

2. E - D = [141011111]\begin{bmatrix} -1 & -4 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}

So (E-D)^T = [101411111]\begin{bmatrix} -1& 0 & 1 \\ -4 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix}

3. BC = [4102]\begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix} X [142315]\begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \\ \end{bmatrix}

= [11536210]\begin{bmatrix} 1 & 15 & 3 \\ 6 & 2 & 10 \\ \end{bmatrix}


4. B^T = [4012]\begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix}

B^TB = [4012]\begin{bmatrix} 4 & 0 \\ -1 & 2 \end{bmatrix} [4102]\begin{bmatrix} 4 & -1 \\ 0 & 2 \end{bmatrix}

= [16445]\begin{bmatrix} 16 & -4 \\ -4 & 5 \end{bmatrix}

(B^TB)C = [16445]\begin{bmatrix} 16 & -4 \\ -4 & 5 \end{bmatrix} [142315]\begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \\ \end{bmatrix}

= [46012111117]\begin{bmatrix} 4 & 60 & 12 \\ 11 & -11 & 17 \\ \end{bmatrix}

5. 3B is of order 2x2 and AB is of order 3x2

So 3B - AB is not conformable for subtraction







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS