A= "\\begin{bmatrix}\n 3 & 0 \\\\\n -1 & 2 \\\\\n 1 & 1\n\\end{bmatrix}" , B = "\\begin{bmatrix}\n 4 & -1 \\\\\n 0 & 2\n\\end{bmatrix}"
C = "\\begin{bmatrix}\n 1 & 4 & 2 \\\\\n 3 & 1 & 5 \\\\\n\\end{bmatrix}" , D = "\\begin{bmatrix}\n 1 & 5 & 2 \\\\\n -1 & 0 & 1 \\\\\n 3 & 2 & 4\n\\end{bmatrix}" ,
E= "\\begin{bmatrix}\n 0 & 1 & 3 \\\\\n -1 & 1 & 2 \\\\\n 4 & 1 & 3\n\\end{bmatrix}"
1. Since C is not a square matrix , C² doesn't exist. Hence -4C² doesn't exist
2. E - D = "\\begin{bmatrix}\n -1 & -4 & 1 \\\\\n 0 & 1 & 1 \\\\\n 1 & -1 & -1\n\\end{bmatrix}"
So (E-D)^T = "\\begin{bmatrix}\n -1& 0 & 1 \\\\\n -4 & 1 & -1 \\\\\n 1 & 1 & -1\n\\end{bmatrix}"
3. BC = "\\begin{bmatrix}\n 4 & -1 \\\\\n 0 & 2\n\\end{bmatrix}" X "\\begin{bmatrix}\n 1 & 4 & 2 \\\\\n 3 & 1 & 5 \\\\\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 1 & 15 & 3 \\\\\n 6 & 2 & 10 \\\\\n\\end{bmatrix}"
4. B^T = "\\begin{bmatrix}\n 4 & 0 \\\\\n -1 & 2\n\\end{bmatrix}"
B^TB = "\\begin{bmatrix}\n 4 & 0 \\\\\n -1 & 2\n\\end{bmatrix}" "\\begin{bmatrix}\n 4 & -1 \\\\\n 0 & 2\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 16 & -4 \\\\\n -4 & 5\n\\end{bmatrix}"
(B^TB)C = "\\begin{bmatrix}\n 16 & -4 \\\\\n -4 & 5\n\\end{bmatrix}" "\\begin{bmatrix}\n 1 & 4 & 2 \\\\\n 3 & 1 & 5 \\\\\n\\end{bmatrix}"
= "\\begin{bmatrix}\n 4 & 60 & 12 \\\\\n 11 & -11 & 17 \\\\\n\\end{bmatrix}"
5. 3B is of order 2x2 and AB is of order 3x2
So 3B - AB is not conformable for subtraction
Comments
Leave a comment