2020-05-27T05:41:43-04:00
Given that M =
2 −1
−3 4
and that M2 − 6M + kI = 0, find k
(Under matrix )
1
2020-05-28T19:40:14-0400
M = ( 2 − 1 − 3 4 ) M=\begin{pmatrix}
2 & -1 \\
-3 & 4
\end{pmatrix} M = ( 2 − 3 − 1 4 )
M 2 = ( 2 − 1 − 3 4 ) ( 2 − 1 − 3 4 ) = M^2=\begin{pmatrix}
2 & -1 \\
-3 & 4
\end{pmatrix}\begin{pmatrix}
2 & -1 \\
-3 & 4
\end{pmatrix}= M 2 = ( 2 − 3 − 1 4 ) ( 2 − 3 − 1 4 ) =
= ( 2 ( 2 ) − 1 ( − 3 ) 2 ( − 1 ) − 1 ( 4 ) − 3 ( 2 ) + 4 ( − 3 ) − 3 ( − 1 ) + 4 ( 4 ) ) = =\begin{pmatrix}
2(2)-1(-3) & 2(-1)-1(4) \\
-3(2)+4(-3) & -3(-1)+4(4)
\end{pmatrix}= = ( 2 ( 2 ) − 1 ( − 3 ) − 3 ( 2 ) + 4 ( − 3 ) 2 ( − 1 ) − 1 ( 4 ) − 3 ( − 1 ) + 4 ( 4 ) ) =
= ( 7 − 6 − 18 19 ) =\begin{pmatrix}
7 & -6 \\
-18 & 19
\end{pmatrix} = ( 7 − 18 − 6 19 )
− 6 M = − 6 ( 2 − 1 − 3 4 ) = -6M=-6\begin{pmatrix}
2 & -1 \\
-3 & 4
\end{pmatrix}= − 6 M = − 6 ( 2 − 3 − 1 4 ) =
= ( − 6 ( 2 ) − 6 ( − 1 ) − 6 ( − 3 ) − 6 ( 4 ) ) = ( − 12 6 18 − 24 ) =\begin{pmatrix}
-6(2) & -6(-1) \\
-6(-3) & -6(4)
\end{pmatrix}=\begin{pmatrix}
-12 & 6 \\
18 & -24
\end{pmatrix} = ( − 6 ( 2 ) − 6 ( − 3 ) − 6 ( − 1 ) − 6 ( 4 ) ) = ( − 12 18 6 − 24 )
M 2 − 6 M = ( 7 − 6 − 18 19 ) + ( − 12 6 18 − 24 ) = M^2-6M=\begin{pmatrix}
7 & -6 \\
-18 & 19
\end{pmatrix}+\begin{pmatrix}
-12 & 6 \\
18 & -24
\end{pmatrix}= M 2 − 6 M = ( 7 − 18 − 6 19 ) + ( − 12 18 6 − 24 ) =
= ( − 5 0 0 − 5 ) = − 5 ( 1 0 0 1 ) = − 5 I =\begin{pmatrix}
-5 & 0 \\
0 & -5
\end{pmatrix}=-5\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}=-5I = ( − 5 0 0 − 5 ) = − 5 ( 1 0 0 1 ) = − 5 I
M 2 − 6 M + k I = − 5 I + k I = 0 M^2-6M+kI=-5I+kI=0 M 2 − 6 M + k I = − 5 I + k I = 0
k = 5 k=5 k = 5
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Dear Nii Laryea, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanks