Given "A = \\begin{bmatrix} 2 & 3 \\\\ 1 & 2\\end{bmatrix}, B = \\begin{bmatrix} 1 & 5\n\\end{bmatrix}" .
Let "I" be the identity then "A I = A, BI = B".
Assume "I = \\begin{bmatrix} a & b \\\\ c & d\\end{bmatrix}" then
"AI = A \\implies \\begin{bmatrix} 2a+3c & 2b+3d \\\\ a+2c & b+2d\\end{bmatrix} = \\begin{bmatrix} 2& 3 \\\\ 1 & 2 \\end{bmatrix}"
So, "2a+3c = 2, 2b+3d = 3, a+2c = 1, b+2d = 2."
Also, "BI = B \\implies \\begin{bmatrix} a+5c & b+5d \\end{bmatrix} = \\begin{bmatrix} 1 & 5 \\end{bmatrix}"
"\\implies a+5c = 1, b+5d = 5."
Hence, "3d=3 \\implies d=1"
and "7c = 0 \\implies c = 0"
Hence, "a = 1, b = 0"
Hence, "I = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1\\end{bmatrix}" .
Option (b) is the correct option.
Comments
Leave a comment