Answer to Question #118524 in Linear Algebra for Jflows

Question #118524
Consider A\\ =\\left[\\begin{array}{cc} 2 & 3\\\\ 1 & 2\\end{array}\\right],\\ B\\ =\\left[\\begin{array}{cc} 1 & 5\\\\ \\end{array}\\right]; what is the identity element of the two matrices
a.\\(\\left[\\begin{array}{cc} 0 & 1\\\\ 1 & 0 \\end{array}\\right]\\)
b.\\(\\left[\\begin{array}{cc} 1 & 0\\\\ 0 & 1 \\end{array}\\right]\\)
c.\\(\\left[\\begin{array}{cc} 0 & 0\\\\ 1 & 1 \\end{array}\\right]\\)
d.\\(\\left[\\begin{array}{cc} 2 & -2\\\\ -13 \\end{array}\\right]\\)
1
Expert's answer
2020-06-04T18:12:44-0400

Given A=[2312],B=[15]A = \begin{bmatrix} 2 & 3 \\ 1 & 2\end{bmatrix}, B = \begin{bmatrix} 1 & 5 \end{bmatrix} .

Let II be the identity then AI=A,BI=BA I = A, BI = B.

Assume I=[abcd]I = \begin{bmatrix} a & b \\ c & d\end{bmatrix} then

AI=A    [2a+3c2b+3da+2cb+2d]=[2312]AI = A \implies \begin{bmatrix} 2a+3c & 2b+3d \\ a+2c & b+2d\end{bmatrix} = \begin{bmatrix} 2& 3 \\ 1 & 2 \end{bmatrix}

So, 2a+3c=2,2b+3d=3,a+2c=1,b+2d=2.2a+3c = 2, 2b+3d = 3, a+2c = 1, b+2d = 2.

Also, BI=B    [a+5cb+5d]=[15]BI = B \implies \begin{bmatrix} a+5c & b+5d \end{bmatrix} = \begin{bmatrix} 1 & 5 \end{bmatrix}

    a+5c=1,b+5d=5.\implies a+5c = 1, b+5d = 5.

Hence, 3d=3    d=13d=3 \implies d=1

and 7c=0    c=07c = 0 \implies c = 0

Hence, a=1,b=0a = 1, b = 0

Hence, I=[1001]I = \begin{bmatrix} 1 & 0 \\ 0 & 1\end{bmatrix} .

Option (b) is the correct option.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment