Question #118108
W={(x1, x2, x3)∈R3: x2+x3=0}. Find two subspace W1,W2 of R such that R3= W⊕W1 and R3=W⊕W2 but W1≠W2
1
Expert's answer
2020-05-25T21:11:00-0400

Let denote V=R3V=\mathbb{R}^3 be a real vector space.

Given that W={(x1,x2,x3)Vx2+x3=0}W=\{(x_1,x_2,x_3) \in V|\: x_2+x_3=0\} subspace of VV .

Let, W1={(x1,x1,x1)V:x1R}W_1=\{(x_1,x_1,x_1)\in V : x_1\in\mathbb{R}\} and W2={(2x1,x1,x1)V:x1R}W_2=\{(2x_1,-x_1,x_1)\in V: \: x_1\in \mathbb{R}\} ,clearly, W,W1,W2W,W_1,W_2 all different as a set.

Claim 1: W1,W2W_1 ,W_2 are subspace of VV

Proof:

Let, a,b,c,dRa,b,c,d \in \mathbb{R} and for every u,vW1&w,yW2u,v \in W_1 \: \&\: w,y \in W_2 consider the linear combination as follows,

Case-I: clearly, u=(u1,u1,u1)&v=(v1,v1,v1)u=(u_1,u_1,u_1)\&v=(v_1,v_1,v_1) such that,


au+bv=(au1+bv1,au1+bv1,au1+bv1)au+bv=(au_1+bv_1,au_1+bv_1,au_1+bv_1)


which implies,

au+bvW1au+bv\in W_1

Hence W1W_1 is vector subspace.


Case-II: In a similar manner as case-I , consider the

cw+dyW2cw+dy\in W_2

Thus our claimed is proved.


Claim 2: V=WW1V=W \oplus W_1

Proof:

Clearly, we see that

V=W+W1V=W+ W_1

Thus we will show that WW1={0}W\cap W_1=\{0\} . Suppose for any wWW1w\in W \cap W_1 such that w0w\neq0 ,thus wW&wW1w\in W \& w\in W_1 which implies,

(x1,x2,x2)=(x1,x1,x1)    (x1,x2,x3)=(0,0,0)(x_1,x_2,-x_2)=(x_1,x_1,x_1)\\\implies (x_1,x_2,x_3)=(0,0,0)

Hence we arrived at contradiction that w0w\neq 0 .

Thus,

V=WW1V=W\oplus W_1

We are done.


Claim 3: V=WW2V=W\oplus W_2

Proof:

Observe that W+W2={(3x1,x2x1,x3+x1):x1,x2,x3R}R3W+W_2=\{(3x_1,x_2-x_1,x_3+x_1): x_1,x_2,x_3 \in \mathbb{R}\}\supset \mathbb{R}^3 which implies


V=W+W2(W+W1V)V=W+W_2 \hspace{1cm}(\because W+W_1\subset V)

Now, we will show that

WW2={0}W\cap W_2=\{0\}

Clearly, exactly applying the same arguments as in claim 2 we get,WW2={0}W\cap W_2=\{0\} .

Thus,

V=WW2V=W\oplus W_2

Hence, we are done.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS