A2=(i00i)(i00i)=(i∗i+0∗0i∗0+0∗i0∗i+i∗00∗0+i∗i)=(−100−1)A^2=\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}=\begin{pmatrix} i*i+0*0 & i*0+0*i \\ 0*i+i*0 & 0*0+i*i \end{pmatrix}=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}A2=(i00i)(i00i)=(i∗i+0∗00∗i+i∗0i∗0+0∗i0∗0+i∗i)=(−100−1)
A4=(−100−1)(−100−1)=(−1(−1)+0∗0−1∗0+0(−1)00(−1)−1∗0−1(−1)+0∗0)=(1001)A^4=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}=\begin{pmatrix} -1(-1)+0*0 & -1*0+0(-1) \\ 00(-1)-1*0 & -1(-1)+0*0 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}A4=(−100−1)(−100−1)=(−1(−1)+0∗000(−1)−1∗0−1∗0+0(−1)−1(−1)+0∗0)=(1001)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments