Question #118435
If A =

(i 0
0 i)
, where i =
√−1, find A^2
and A^4
(Matrices)
1
Expert's answer
2020-05-28T17:59:35-0400

A2=(i00i)(i00i)=(ii+00i0+0i0i+i000+ii)=(1001)A^2=\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}=\begin{pmatrix} i*i+0*0 & i*0+0*i \\ 0*i+i*0 & 0*0+i*i \end{pmatrix}=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}

A4=(1001)(1001)=(1(1)+0010+0(1)00(1)101(1)+00)=(1001)A^4=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}=\begin{pmatrix} -1(-1)+0*0 & -1*0+0(-1) \\ 00(-1)-1*0 & -1(-1)+0*0 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS