Answer to Question #118440 in Linear Algebra for Nii Laryea
Given that M = 2 −1
−3 4
and that M^2 − 6M + kI = 0, find k.
1
2020-05-28T18:01:34-0400
"M=\\begin{pmatrix}\n 2 & -1 \\\\\n -3 & 4\n\\end{pmatrix}"
"M^2=\\begin{pmatrix}\n 2 & -1 \\\\\n -3 & 4\n\\end{pmatrix}\\begin{pmatrix}\n 2 & -1 \\\\\n -3 & 4\n\\end{pmatrix}="
"=\\begin{pmatrix}\n 2(2)-1(-3) & 2(-1)-1(4) \\\\\n -3(2)+4(-3) & -3(-1)+4(4)\n\\end{pmatrix}="
"=\\begin{pmatrix}\n 7 & -6 \\\\\n -18 & 19\n\\end{pmatrix}"
"M^2-6M=\\begin{pmatrix}\n 7 & -6 \\\\\n -18 & 19\n\\end{pmatrix}-\\begin{pmatrix}\n 12 & -6 \\\\\n -18 & 24\n\\end{pmatrix}="
"=\\begin{pmatrix}\n -5 & 0 \\\\\n 0 & -5\n\\end{pmatrix}=-5\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix}=-5I" "k=5"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment