2020-05-26T18:04:58-04:00
If A =
(i 0
0 i)
, where i =
√−1, find A^2
and A^4
(Matrices)
1
2020-05-27T17:13:13-0400
A = ( i 0 0 i ) A=\begin{pmatrix}
i & 0\\
0 & i
\end{pmatrix} A = ( i 0 0 i )
A 2 = ( i 0 0 i ) ( i 0 0 i ) = A^2=\begin{pmatrix}
i & 0\\
0 & i
\end{pmatrix}\begin{pmatrix}
i & 0\\
0 & i
\end{pmatrix}= A 2 = ( i 0 0 i ) ( i 0 0 i ) =
= ( i 2 + 0 0 + 0 0 + 0 0 + i 2 ) = ( − 1 0 0 − 1 ) =\begin{pmatrix}
i^2+0 & 0+0\\
0+0 & 0+i^2
\end{pmatrix}=\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix} = ( i 2 + 0 0 + 0 0 + 0 0 + i 2 ) = ( − 1 0 0 − 1 )
A 4 = ( − 1 0 0 − 1 ) ( − 1 0 0 − 1 ) = A^4=\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
-1 & 0\\
0 & -1
\end{pmatrix}= A 4 = ( − 1 0 0 − 1 ) ( − 1 0 0 − 1 ) =
= ( ( − 1 ) 2 + 0 0 + 0 0 + 0 0 + ( − 1 ) 2 ) = ( 1 0 0 1 ) =\begin{pmatrix}
(-1)^2+0 & 0+0\\
0+0 & 0+(-1)^2
\end{pmatrix}=\begin{pmatrix}
1 & 0\\
0 & 1
\end{pmatrix} = ( ( − 1 ) 2 + 0 0 + 0 0 + 0 0 + ( − 1 ) 2 ) = ( 1 0 0 1 )
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments