Question #118437
If A =

(i 0
0 i)
, where i =
√−1, find A^2
and A^4
(Matrices)
1
Expert's answer
2020-05-27T17:13:13-0400
A=(i00i)A=\begin{pmatrix} i & 0\\ 0 & i \end{pmatrix}

A2=(i00i)(i00i)=A^2=\begin{pmatrix} i & 0\\ 0 & i \end{pmatrix}\begin{pmatrix} i & 0\\ 0 & i \end{pmatrix}=

=(i2+00+00+00+i2)=(1001)=\begin{pmatrix} i^2+0 & 0+0\\ 0+0 & 0+i^2 \end{pmatrix}=\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}

A4=(1001)(1001)=A^4=\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}=

=((1)2+00+00+00+(1)2)=(1001)=\begin{pmatrix} (-1)^2+0 & 0+0\\ 0+0 & 0+(-1)^2 \end{pmatrix}=\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS