Question #118713
A and X are the matrices
a b
c d !
and
x y
u v !
respectively, where b is not equal
to zero. Prove that if AX = XA then u = cy/b and v = x + (d − a)y/b. Hence prove
that if AX = XA then there are numbers p and q such that X = pA + qI, and find
p and q in terms of a, b, x, y.
1
Expert's answer
2020-05-31T15:10:45-0400
A=(abcd),X=(xyuv)A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},X=\begin{pmatrix} x & y\\ u & v \end{pmatrix}

AX=(abcd)(xyuv)=(ax+buay+bvcx+ducy+dv)AX=\begin{pmatrix} a & b\\ c & d \end{pmatrix}\begin{pmatrix} x & y\\ u & v \end{pmatrix}=\begin{pmatrix} ax+bu & ay+bv\\ cx+du & cy+dv \end{pmatrix}

XA=(xyuv)(abcd)=(ax+cybx+dyau+cvbu+dv)XA=\begin{pmatrix} x & y\\ u & v \end{pmatrix}\begin{pmatrix} a & b\\ c & d \end{pmatrix}=\begin{pmatrix} ax+cy & bx+dy\\ au+cv & bu+dv \end{pmatrix}

AX=XA=>AX=XA=>

(ax+buay+bvcx+ducy+dv)=(ax+cybx+dyau+cvbu+dv)\begin{pmatrix} ax+bu & ay+bv\\ cx+du & cy+dv \end{pmatrix}=\begin{pmatrix} ax+cy & bx+dy\\ au+cv & bu+dv \end{pmatrix}

ax+bu=ax+cyay+bv=bx+dycx+du=au+cvcy+dv=bu+dv\begin{matrix} ax+bu=ax+cy \\ ay+bv=bx+dy \\ cx+du=au+cv \\ cy+dv=bu+dv \end{matrix}

Then


bu=cy=>u=cyb,b0bu=cy=>u={cy\over b},b\not=0

bv=bx+(da)y=>v=x+daby,b0bv=bx+(d-a)y=>v=x+{d-a\over b}y,b\not=0

X=pA+qIX=pA+qI

X=(xyuv)=(xycybx+daby)=X=\begin{pmatrix} x & y\\ u & v \end{pmatrix}=\begin{pmatrix} x & y\\ {cy \over b} &x+ {d-a \over b}y \end{pmatrix}=

=p(abcd)+q(1001)=p\begin{pmatrix} a & b \\ c & d \end{pmatrix}+q\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

pa+q=xpb=ypc=cybpd+q=x+daby\begin{matrix} pa+q=x \\ pb=y \\ pc={cy \over b} \\ pd+q=x+{d-a \over b}y \end{matrix}

p=ybp={y \over b}

q=xabyq=x-{a \over b}y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS