We know that A is
"A= \\begin{pmatrix}\n i & 0 \\\\\n 0 & i\n\\end{pmatrix}" . Therefore, "A^2 = \\begin{pmatrix}\n i & 0 \\\\\n 0 & i\n\\end{pmatrix} \\cdot \\begin{pmatrix}\n i & 0 \\\\\n 0 & i\n\\end{pmatrix} = \\begin{pmatrix}\n i\\cdot i+0\\cdot0 & i\\cdot0 +0\\cdot i\\\\\n 0\\cdot i + i\\cdot0 & 0\\cdot0+i\\cdot i\n\\end{pmatrix} = \\begin{pmatrix}\n -1 & 0 \\\\\n 0 & -1\n\\end{pmatrix}."
Next, "A^4 = A^2\\cdot A^2 = \\begin{pmatrix}\n -1 & 0 \\\\\n 0 & -1\n\\end{pmatrix} \\cdot \\begin{pmatrix}\n -1 & 0 \\\\\n 0 & -1\n\\end{pmatrix} = \\begin{pmatrix}\n -1\\cdot-1 + 0\\cdot0 & -1\\cdot0+0\\cdot-1 \\\\\n 0\\cdot-1+-1\\cdot0 & 0\\cdot0+-1\\cdot-1\n\\end{pmatrix} = \\begin{pmatrix}\n 1 & 0 \\\\\n 0 &1\n\\end{pmatrix}"
We may also note that "A = i\\cdot \\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix}," therefore "A^2 = (-1)\\cdot\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix}," "A^4 = 1\\cdot \\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix} = \\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{pmatrix}."
Comments
Leave a comment