Answer to Question #118708 in Linear Algebra for Max

Question #118708
3. If A = i 0
0 i

where i =√−1, find A^2
and A^4.
1
Expert's answer
2020-05-28T15:07:58-0400

We know that A is

A=(i00i)A= \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} . Therefore, A2=(i00i)(i00i)=(ii+00i0+0i0i+i000+ii)=(1001).A^2 = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} \cdot \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} = \begin{pmatrix} i\cdot i+0\cdot0 & i\cdot0 +0\cdot i\\ 0\cdot i + i\cdot0 & 0\cdot0+i\cdot i \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.

Next, A4=A2A2=(1001)(1001)=(11+0010+0101+1000+11)=(1001)A^4 = A^2\cdot A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1\cdot-1 + 0\cdot0 & -1\cdot0+0\cdot-1 \\ 0\cdot-1+-1\cdot0 & 0\cdot0+-1\cdot-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 &1 \end{pmatrix}

We may also note that A=i(1001),A = i\cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, therefore A2=(1)(1001),A^2 = (-1)\cdot\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A4=1(1001)=(1001).A^4 = 1\cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment