"A=\\begin{pmatrix}\n 3 & 0 \\\\\n -1 & 2\\\\\n1&1\n\\end{pmatrix}, B=\\begin{pmatrix}\n 1 & 5 \\\\\n 4 & -1\\\\\n0&2\n\\end{pmatrix}, \\\\\nC=\\begin{pmatrix}\n 2 & 0&1 \\\\\n 1 & 4&2\\\\\n3&1&5\n\\end{pmatrix}, D=\\begin{pmatrix}\n -1 &0&1 \\\\\n 3 & 2&4\n\\end{pmatrix}, \\\\\nE=\\begin{pmatrix}\n -1 &1&2 \\\\\n 4 & 1&3\n\\end{pmatrix}"
"-4C^2=-4\\begin{pmatrix}\n 2 & 0&1 \\\\\n 1 & 4&2\\\\\n3&1&5\n\\end{pmatrix}\\cdot\\begin{pmatrix}\n 2 & 0&1 \\\\\n 1 & 4&2\\\\\n3&1&5\n\\end{pmatrix}=\\\\\n=-4\\begin{pmatrix}\n 4+0+3 & 0+0+1&2+0+5 \\\\\n 2+4+6 & 0+16+2&1+8+10\\\\\n6+1+15&0+4+5&3+2+25\n\\end{pmatrix}=\\\\\n=-4\\begin{pmatrix}\n 7 & 1&7 \\\\\n 12 & 18&19\\\\\n22&9&30\n\\end{pmatrix}=\\\\\n=\\begin{pmatrix}\n - 28 & -4&-28 \\\\\n -48 & -72&-76\\\\\n-88&-36&-120\n\\end{pmatrix}"
2.
"(E-D)^T=\\\\=\\left(\\begin{pmatrix}\n -1 &1&2 \\\\\n 4 & 1&3\n\\end{pmatrix}-\\begin{pmatrix}\n -1 &0&1 \\\\\n 3 & 2&4\n\\end{pmatrix}\\right)^T=\\\\\n=\\left(\\begin{pmatrix}\n 0 &1&1 \\\\\n 1 & -1&-1\n\\end{pmatrix}\\right)^T=\\\\\n=\\begin{pmatrix}\n 0 & 1 \\\\\n 1& -1\\\\\n1&-1\n\\end{pmatrix}"
3.
"A(BC)"
"B:3\\times2,\nC:3\\times3\\\\"
The product "BC" does not exist.
4.
"(B^TB)C"
"B^T=\\begin{pmatrix}\n 1 & 4&0 \\\\\n 5 & -1&2\n\\end{pmatrix},B=\\begin{pmatrix}\n 1 & 5 \\\\\n 4 & -1\\\\\n0&2\n\\end{pmatrix}\\\\\nB^T\\cdot B=\\begin{pmatrix}\n 1 & 4&0 \\\\\n 5 & -1&2\n\\end{pmatrix}\\cdot\\begin{pmatrix}\n 1 & 5 \\\\\n 4 & -1\\\\\n0&2\n\\end{pmatrix}=\\\\\n=\n\\begin{pmatrix}\n 1+16+0 & 5-4+0 \\\\\n 5-4+0 & 25+1+4\n\\end{pmatrix}=\\begin{pmatrix}\n 17 & 1 \\\\\n 1 & 30\n\\end{pmatrix}"
"B^T\\cdot B:2\\times2, C:3\\times3"
The product "(B^TB)C" does not exist.
5.
"3B-AB\\\\\n3B=3\\begin{pmatrix}\n 1 & 5 \\\\\n 4 & -1\\\\\n0&2\n\\end{pmatrix}=\\begin{pmatrix}\n 3 & 15 \\\\\n 12 & -3\\\\\n0&6\n\\end{pmatrix}"
"A:3\\times2, B:3\\times2"
The product "AB" does not exist.
Then 3B-AB does not exist.
Comments
Leave a comment