Question #118715
A and X are the matrices
a b
c d
and
x y
u v
respectively, where b is not equal to zero. Prove that if AX = XA then u = cy/b and v = x + (d − a)y/b. Hence prove
that if AX = XA then there are numbers p and q such that X = pA + qI, and find
p and q in terms of a, b, x, y.
1
Expert's answer
2020-06-01T19:07:48-0400

A=[abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix} and X=[xyuv]\begin{bmatrix} x & y \\ u & v \end{bmatrix} and b is not equal to zero.

now given,

AX = XA

or [abcd][xyuv]\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} x & y \\ u & v \end{bmatrix} = [xyuv][abcd]\begin{bmatrix} x & y \\ u & v \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}


or [ax+buay+bvcx+ducy+dv]\begin{bmatrix} ax+bu & ay+bv \\ cx+du & cy+dv \end{bmatrix} = [ax+cybx+dyau+cvbu+dv]\begin{bmatrix} ax+cy & bx+dy \\ au+cv & bu+dv \end{bmatrix}


As the two matrices are equal we can compare the corresponding elements of the two matrices.


\therefore ax+bu=ax+cyax+bu = ax+cy

or bu=cybu=cy

or u=cy/bu = cy/b ( as b is not equal to zero)

(proved)

Again,


or ay+bv=bx+dyay+bv = bx+dy

or bv=dyay+bxbv = dy-ay+bx

or bv=(da)y+bxbv = (d-a)y+bx

or v=(da)y/b+xv= (d-a)y/b+x (proved)


Now

or X=pA+qIX=pA+qI

or [xyuv]\begin{bmatrix} x & y \\ u & v \end{bmatrix} = p[abcd]p\begin{bmatrix} a & b \\ c & d \end{bmatrix} + qq [1001]\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}

or [xyuv]\begin{bmatrix} x & y \\ u & v \end{bmatrix} = [papbpcpd]\begin{bmatrix} p a &pb \\ pc & pd \end{bmatrix} + [q00q]\begin{bmatrix} q & 0 \\ 0 & q \end{bmatrix}

or [xyuv]\begin{bmatrix} x & y \\ u & v \end{bmatrix} = [pa+qpbpcpd+q]\begin{bmatrix} pa+q &p b \\ pc & pd+q \end{bmatrix}


As the two matrices are equal we can compare the corresponding elements of two matrices.


\therefore x=pa+qx=pa+q and y=pby= pb

Now y=pby=pb

or p=y/bp = y/b . Answer


again

x=pa+qx=pa+q

or x=(ay)/b+qx= (ay)/b+q

or q=x((ay)/b)q= x-((ay)/b) Answer





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
02.06.20, 21:43

Dear Nii Laryeva, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Nii Laryea
02.06.20, 11:56

Alright

LATEST TUTORIALS
APPROVED BY CLIENTS