Given, the differential equation,(1+y2)dx=(tan−1y−x)dydydx=1+y2tan−1y−1+y2xdydx+1+y2x=1+y2tan−1yThis is a linear differential equation in term of x. Integrating factor, IF=e∫1+y2dyThen, solution is given byxetan−1y=∫1+y2tan−1yetan−1ydyPuttan−1y=t⟹1+y2dy=dtTherefore,∫1+y2tan−1yetan−1ydy=−∫tetdt=(1−t)et=(1−tan−1y)etan−1y+CThen,the solutionxetan−1y=(1−tan−1y)etan−1y+C
Comments