Question #199566

(1+y2)dx=(tan-1 y-x)dy

1
Expert's answer
2021-06-07T13:27:08-0400

Given, the differential equation,(1+y2)dx=(tan1yx)dydxdy=tan1y1+y2x1+y2dxdy+x1+y2=tan1y1+y2This is a linear differential equation in term of x. Integrating factor, IF=edy1+y2Then, solution is given byxetan1y=tan1y1+y2etan1ydyPuttan1y=t    dy1+y2=dtTherefore,tan1y1+y2etan1ydy=tetdt=(1t)et=(1tan1y)etan1y+CThen,the solutionxetan1y=(1tan1y)etan1y+C\text{Given, the differential equation,}\\ (1+y^2)dx=(tan^{-1} y-x)dy\\ \frac{dx}{dy}=\frac{tan^{-1}y}{1+y^2}-\frac{x}{1+y^2}\\ \frac{dx}{dy}+\frac{x}{1+y^2} =\frac{tan^{-1}y}{1+y^2}\\ \text{This is a linear differential equation in term of x.}\\ \text{ Integrating factor, }\\ IF=e^{ \int \frac{dy}{1+y^2}} \\ \text{Then, solution is given by} \\ xe^{tan^{-1}y}= \int \frac{tan^{-1}y}{1+y^2}e^{tan^{-1}y}dy\\ Put \\ tan^{-1}y=t\implies \frac{dy}{1+y^2}=dt\\ Therefore,\\ \int \frac{tan^{-1}y}{1+y^2}e^{tan^{-1}y}dy=-\int te^{t}dt\\ =(1-t)e^t\\ =(1-tan^{-1}y)e^{tan^{-1}y}+C\\ Then, the\space solution\\ xe^{tan^{-1}y}=(1-tan^{-1}y)e^{tan^{-1}y}+C\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS