(1+y2)dx=(tan-1 y-x)dy
"\\text{Given, the differential equation,}\\\\\n(1+y^2)dx=(tan^{-1} y-x)dy\\\\\n\\frac{dx}{dy}=\\frac{tan^{-1}y}{1+y^2}-\\frac{x}{1+y^2}\\\\\n\\frac{dx}{dy}+\\frac{x}{1+y^2}\n=\\frac{tan^{-1}y}{1+y^2}\\\\\n\\text{This is a linear differential equation in term of x.}\\\\\n\\text{\nIntegrating factor, }\\\\\nIF=e^{ \\int \\frac{dy}{1+y^2}} \\\\\n\\text{Then, solution is given by} \\\\\nxe^{tan^{-1}y}= \\int \\frac{tan^{-1}y}{1+y^2}e^{tan^{-1}y}dy\\\\\nPut \\\\\ntan^{-1}y=t\\implies \\frac{dy}{1+y^2}=dt\\\\\nTherefore,\\\\\n\\int \\frac{tan^{-1}y}{1+y^2}e^{tan^{-1}y}dy=-\\int te^{t}dt\\\\\n=(1-t)e^t\\\\\n=(1-tan^{-1}y)e^{tan^{-1}y}+C\\\\\nThen, the\\space solution\\\\\nxe^{tan^{-1}y}=(1-tan^{-1}y)e^{tan^{-1}y}+C\\\\"
Comments
Leave a comment