Wave equation:
yxx=ytt/c2
Separate the variables:
y(x,t)=X(x)Y(t)
XX′′=c2YY′′=−k2
X′′+k2X=0
X(x)=c1sin(kx)+c2cos(kx)
Y′′+c2k2Y=0
Y(t)=c3sin(ckt)+c4cos(ckt)
y(x,t)=(c1sin(kx)+c2cos(kx))(c3sin(ckt)+c4cos(ckt))
The boundary conditions:
y(0,t)=0 . fixed node
y(l,t)=0 . fixed node
yt(x,0)=0 , string is only released at t=0
y(x,0)=y0sin3(πx/l) , initial shape
For the 1st condition:
c2(c3sin(ckt)+c4cos(ckt))=0
For the 2nd condition:
c1sin(kl)(c3sin(ckt)+cos(ckt))=0
k=nπ/l , n=1,2,...
Now, the solution:
y(x,t)=c1sin(nπx/l)(c3sin(nπct/l)+c4cos(nπct/l))
For the 3rd condition:
c1sin(nπx/l)(c3nπc/l)=0⟹c3=0
y(x,t)=c1c41∑∞bnsin(nπx/l)cos(nπct/l)
For the 4th condition:
y(x,0)=y0sin3(πx/l)=y0(43sin(πx/l)−41sin(3πx/l))=
=1∑∞bnsin(nπx/l)
Comparing coefficients, we get:
b1=3y0/4
b2=b4=0
b3=−y0/4
The final solution:
y(x,t)=43y0(πx/l)cos(πct/l)−41y0(3πx/l)cos(3πct/l)
Comments