A tightly stretched string with fixed end points x = 0 and x = l is initially in a position
given by y = y0 sin3(πx/l) . It is released from rest from the initial position. Find the
displacement y(x, t) .
Wave equation:
"y_{xx}=y_{tt}\/c^2"
Separate the variables:
"y(x,t)=X(x)Y(t)"
"\\frac{X''}{X}=\\frac{Y''}{c^2Y}=-k^2"
"X''+k^2X=0"
"X(x)=c_1sin(kx)+c_2cos(kx)"
"Y''+c^2k^2Y=0"
"Y(t)=c_3sin(ckt)+c_4cos(ckt)"
"y(x,t)=(c_1sin(kx)+c_2cos(kx))(c_3sin(ckt)+c_4cos(ckt))"
The boundary conditions:
"y(0,t)=0" . fixed node
"y(l,t)=0" . fixed node
"y_t(x,0)=0" , string is only released at t=0
"y(x,0)=y_0sin^3(\\pi x\/l)" , initial shape
For the 1st condition:
"c_2(c_3sin(ckt)+c_4cos(ckt))=0"
For the 2nd condition:
"c_1sin(kl)(c_3sin(ckt)+cos(ckt))=0"
"k=n\\pi\/l" , "n=1,2,..."
Now, the solution:
"y(x,t)=c_1sin(n\\pi x\/l)(c_3sin(n\\pi ct\/l)+c_4cos(n\\pi ct\/l))"
For the 3rd condition:
"c_1sin(n\\pi x\/l)(c_3n\\pi c\/l)=0\\implies c_3=0"
"y(x,t)=c_1c_4\\displaystyle{\\sum^{\\infin}_1b_nsin(n\\pi x\/l)cos(n\\pi ct\/l)}"
For the 4th condition:
"y(x,0)=y_0sin^3(\\pi x\/l)=y_0(\\frac{3}{4}sin(\\pi x\/l)-\\frac{1}{4}sin(3\\pi x\/l))="
"=\\displaystyle{\\sum^{\\infin}_1b_nsin(n\\pi x\/l)}"
Comparing coefficients, we get:
"b_1=3y_0\/4"
"b_2=b_4=0"
"b_3=-y_0\/4"
The final solution:
"y(x,t)=\\frac{3}{4}y_0(\\pi x\/l)cos(\\pi ct\/l)-\\frac{1}{4}y_0(3\\pi x\/l)cos(3\\pi ct\/l)"
Comments
Leave a comment