Question #199556

A tightly stretched string with fixed end points x = 0 and x = l is initially in a position

given by y = y0 sin3(πx/l) . It is released from rest from the initial position. Find the

displacement y(x, t) .


1
Expert's answer
2021-06-07T13:06:56-0400

Wave equation:

yxx=ytt/c2y_{xx}=y_{tt}/c^2

Separate the variables:

y(x,t)=X(x)Y(t)y(x,t)=X(x)Y(t)

XX=Yc2Y=k2\frac{X''}{X}=\frac{Y''}{c^2Y}=-k^2


X+k2X=0X''+k^2X=0

X(x)=c1sin(kx)+c2cos(kx)X(x)=c_1sin(kx)+c_2cos(kx)


Y+c2k2Y=0Y''+c^2k^2Y=0

Y(t)=c3sin(ckt)+c4cos(ckt)Y(t)=c_3sin(ckt)+c_4cos(ckt)


y(x,t)=(c1sin(kx)+c2cos(kx))(c3sin(ckt)+c4cos(ckt))y(x,t)=(c_1sin(kx)+c_2cos(kx))(c_3sin(ckt)+c_4cos(ckt))


The boundary conditions:

y(0,t)=0y(0,t)=0 . fixed node

y(l,t)=0y(l,t)=0 . fixed node

yt(x,0)=0y_t(x,0)=0 , string is only released at t=0

y(x,0)=y0sin3(πx/l)y(x,0)=y_0sin^3(\pi x/l) , initial shape


For the 1st condition:

c2(c3sin(ckt)+c4cos(ckt))=0c_2(c_3sin(ckt)+c_4cos(ckt))=0

For the 2nd condition:

c1sin(kl)(c3sin(ckt)+cos(ckt))=0c_1sin(kl)(c_3sin(ckt)+cos(ckt))=0

k=nπ/lk=n\pi/l , n=1,2,...n=1,2,...


Now, the solution:

y(x,t)=c1sin(nπx/l)(c3sin(nπct/l)+c4cos(nπct/l))y(x,t)=c_1sin(n\pi x/l)(c_3sin(n\pi ct/l)+c_4cos(n\pi ct/l))


For the 3rd condition:

c1sin(nπx/l)(c3nπc/l)=0    c3=0c_1sin(n\pi x/l)(c_3n\pi c/l)=0\implies c_3=0


y(x,t)=c1c41bnsin(nπx/l)cos(nπct/l)y(x,t)=c_1c_4\displaystyle{\sum^{\infin}_1b_nsin(n\pi x/l)cos(n\pi ct/l)}


For the 4th condition:

y(x,0)=y0sin3(πx/l)=y0(34sin(πx/l)14sin(3πx/l))=y(x,0)=y_0sin^3(\pi x/l)=y_0(\frac{3}{4}sin(\pi x/l)-\frac{1}{4}sin(3\pi x/l))=

=1bnsin(nπx/l)=\displaystyle{\sum^{\infin}_1b_nsin(n\pi x/l)}

Comparing coefficients, we get:

b1=3y0/4b_1=3y_0/4

b2=b4=0b_2=b_4=0

b3=y0/4b_3=-y_0/4


The final solution:

y(x,t)=34y0(πx/l)cos(πct/l)14y0(3πx/l)cos(3πct/l)y(x,t)=\frac{3}{4}y_0(\pi x/l)cos(\pi ct/l)-\frac{1}{4}y_0(3\pi x/l)cos(3\pi ct/l)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS