Find the integral surface of the PDE
(x - y) p + ( y - x - z)q = z .
QUESTION
Find the integral surface of the PDE
"(\ud835\udc65 \u2212 \ud835\udc66)\ud835\udc5d + (\ud835\udc66 \u2212 \ud835\udc65 \u2212 \ud835\udc67)\ud835\udc5e = z"
SOLUTION
By Lagrange’s method the auxiliary equations are as following:
"\\frac{dx}{x-y}=\\frac{dy}{y-x-z}=\\frac{dz}{z}...................(1)"
One of a way to solve the system in symmetric form is to use the equal fractions property
"\\frac{a_1}{b_1}=\\frac{a_2}{b_2}=......=\\frac{a_n}{b_n}=\\frac{\\lambda_1 a_1+\\lambda_2 a_2+...+\\lambda_n a_n}{\\lambda_1 b_1+\\lambda_2 b_2+...+\\lambda_n b_n}"
Choosing "\\lambda_1 =\\lambda_2=\\lambda_3=1" as multipliers, each fraction on (1):
"\\frac{dx}{x-y}=\\frac{dy}{y-x-z}=\\frac{dz}{z}=\\frac{1.dx+1.dy+1.dz}{1.(x-y)+1.(y-x-z)+1.(z)}"
"\\frac{dx}{x-y}=\\frac{dy}{y-x-z}=\\frac{dz}{z}=\\frac{d(x+y+z)}{x-y+y-x-z+z}"
"\\frac{dx}{x-y}=\\frac{dy}{y-x-z}=\\frac{dz}{z}=\\frac{d(x+y+z)}{0}"
"d(x+y+z)=0"
"x+y+z=c_1............................(2)"
Take the last two fractions of (1) and using (2) we get
"\\frac{dy}{y-x-z}=\\frac{dz}{z} ; x+y+z=c_1"
"\\frac{dy}{y-(x+z)}=\\frac{dz}{z} ; x+z=c_1-y"
"\\frac{dy}{y-(c_1-y)}=\\frac{dz}{z}"
"\\frac{dy}{y-c_1+y}=\\frac{dz}{z}"
"\\frac{dy}{2y-c_1}=\\frac{dz}{z}"
now integrate both side, we get,
"\\frac{1}{2}.ln|2y-c_1|=ln|z|+ln|c_2|"
"ln|2y-c_1|=2.ln|z|+2.ln|c_2|"
"ln|2y-c_1|=2.ln|z|+ln|c_3|"
"ln|2y-c_1|-ln|z^2|=ln|c_3|"
"\\frac{2y-c_1}{z^2}=c_3"
again put value of "c_1"
"\\frac{2y-(x+y+z)}{z^2}=c_3"
"\\frac{(y-x-z)}{z^2}=c_3.......................(3)"
Therefore, any integral surface of the differential equation
(𝑥 − 𝑦)𝑝 + (𝑦 − 𝑥 − 𝑧)𝑞 = 𝑧 is described by the equation
"f(c_1,c_3)=0\\\\\n\nf(x+y+z,\\frac{(y-x-z)}{z^2})=0\\\\"
where f is arbitrary function.
Comments
Leave a comment