QUESTION
Find the integral surface of the PDE
(x−y)p+(y−x−z)q=z
SOLUTION
By Lagrange’s method the auxiliary equations are as following:
x−ydx=y−x−zdy=zdz...................(1)
One of a way to solve the system in symmetric form is to use the equal fractions property
b1a1=b2a2=......=bnan=λ1b1+λ2b2+...+λnbnλ1a1+λ2a2+...+λnan
Choosing λ1=λ2=λ3=1 as multipliers, each fraction on (1):
x−ydx=y−x−zdy=zdz=1.(x−y)+1.(y−x−z)+1.(z)1.dx+1.dy+1.dz
x−ydx=y−x−zdy=zdz=x−y+y−x−z+zd(x+y+z)
x−ydx=y−x−zdy=zdz=0d(x+y+z)
d(x+y+z)=0
x+y+z=c1............................(2)
Take the last two fractions of (1) and using (2) we get
y−x−zdy=zdz;x+y+z=c1
y−(x+z)dy=zdz;x+z=c1−y
y−(c1−y)dy=zdz
y−c1+ydy=zdz
2y−c1dy=zdz
now integrate both side, we get,
21.ln∣2y−c1∣=ln∣z∣+ln∣c2∣
ln∣2y−c1∣=2.ln∣z∣+2.ln∣c2∣
ln∣2y−c1∣=2.ln∣z∣+ln∣c3∣
ln∣2y−c1∣−ln∣z2∣=ln∣c3∣
z22y−c1=c3
again put value of c1
z22y−(x+y+z)=c3
z2(y−x−z)=c3.......................(3)
Therefore, any integral surface of the differential equation
(𝑥 − 𝑦)𝑝 + (𝑦 − 𝑥 − 𝑧)𝑞 = 𝑧 is described by the equation
f(c1,c3)=0f(x+y+z,z2(y−x−z))=0
where f is arbitrary function.
Comments