Question #199561

Find the integral surface of the PDE

(x - y) p + ( y - x - z)q = z .


1
Expert's answer
2021-06-08T09:11:18-0400

QUESTION

Find the integral surface of the PDE 

(𝑥𝑦)𝑝+(𝑦𝑥𝑧)𝑞=z(𝑥 − 𝑦)𝑝 + (𝑦 − 𝑥 − 𝑧)𝑞 = z


SOLUTION

By Lagrange’s method the auxiliary equations are as following:

dxxy=dyyxz=dzz...................(1)\frac{dx}{x-y}=\frac{dy}{y-x-z}=\frac{dz}{z}...................(1)

One of a way to solve the system in symmetric form is to use the equal fractions property

a1b1=a2b2=......=anbn=λ1a1+λ2a2+...+λnanλ1b1+λ2b2+...+λnbn\frac{a_1}{b_1}=\frac{a_2}{b_2}=......=\frac{a_n}{b_n}=\frac{\lambda_1 a_1+\lambda_2 a_2+...+\lambda_n a_n}{\lambda_1 b_1+\lambda_2 b_2+...+\lambda_n b_n}


Choosing λ1=λ2=λ3=1\lambda_1 =\lambda_2=\lambda_3=1 as multipliers, each fraction on (1):

dxxy=dyyxz=dzz=1.dx+1.dy+1.dz1.(xy)+1.(yxz)+1.(z)\frac{dx}{x-y}=\frac{dy}{y-x-z}=\frac{dz}{z}=\frac{1.dx+1.dy+1.dz}{1.(x-y)+1.(y-x-z)+1.(z)}


dxxy=dyyxz=dzz=d(x+y+z)xy+yxz+z\frac{dx}{x-y}=\frac{dy}{y-x-z}=\frac{dz}{z}=\frac{d(x+y+z)}{x-y+y-x-z+z}


dxxy=dyyxz=dzz=d(x+y+z)0\frac{dx}{x-y}=\frac{dy}{y-x-z}=\frac{dz}{z}=\frac{d(x+y+z)}{0}


d(x+y+z)=0d(x+y+z)=0


x+y+z=c1............................(2)x+y+z=c_1............................(2)


Take the last two fractions of (1) and using (2) we get


dyyxz=dzz;x+y+z=c1\frac{dy}{y-x-z}=\frac{dz}{z} ; x+y+z=c_1


dyy(x+z)=dzz;x+z=c1y\frac{dy}{y-(x+z)}=\frac{dz}{z} ; x+z=c_1-y


dyy(c1y)=dzz\frac{dy}{y-(c_1-y)}=\frac{dz}{z}


dyyc1+y=dzz\frac{dy}{y-c_1+y}=\frac{dz}{z}


dy2yc1=dzz\frac{dy}{2y-c_1}=\frac{dz}{z}


now integrate both side, we get,


12.ln2yc1=lnz+lnc2\frac{1}{2}.ln|2y-c_1|=ln|z|+ln|c_2|


ln2yc1=2.lnz+2.lnc2ln|2y-c_1|=2.ln|z|+2.ln|c_2|


ln2yc1=2.lnz+lnc3ln|2y-c_1|=2.ln|z|+ln|c_3|


ln2yc1lnz2=lnc3ln|2y-c_1|-ln|z^2|=ln|c_3|


2yc1z2=c3\frac{2y-c_1}{z^2}=c_3


again put value of c1c_1


2y(x+y+z)z2=c3\frac{2y-(x+y+z)}{z^2}=c_3


(yxz)z2=c3.......................(3)\frac{(y-x-z)}{z^2}=c_3.......................(3)


Therefore, any integral surface of the differential equation

(𝑥 − 𝑦)𝑝 + (𝑦 − 𝑥 − 𝑧)𝑞 = 𝑧 is described by the equation


f(c1,c3)=0f(x+y+z,(yxz)z2)=0f(c_1,c_3)=0\\ f(x+y+z,\frac{(y-x-z)}{z^2})=0\\

where f is arbitrary function.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS