Question #199551

Find a continuous solution of the Intial Value Problem

dy/dx + y = g(t), y(0) = 0

where g(t) = {2, when 0<=t<=1

and g(t) = {0, when t>1


1
Expert's answer
2021-06-04T13:53:57-0400

The given ODE is an inhomogeneous linear ordinary differential equation. We can apply the method of variation of parameters.

At first we solve the homogeneous equation:

dy/dx + y = 0

dy/y=dxdy/y=-dx

dlogy=dxd\log y=-dx

y=cexy=ce^{-x}

If c is an arbitrary constant, the last equation is a general solution of the homogeneous ODE. In order to solve inhomogeneous ODE, consider c as a function on x. Then

dy/dx+y=(cexcex)+cex=cex=g(x)dy/dx + y =(c'e^{-x}-ce^{-x}) + ce^{-x}=c'e^{-x}=g(x)

c=g(x)exc'=g(x)e^x

c(x)=c0+1xg(t)etdtc(x)=c_0+\int\limits_{1}^{x}g(t)e^tdt

If 0x10\leq x\leq1 then

c(x)=c0+1x2etdt=c0+2ex2ec(x)=c_0+\int\limits_{1}^{x}2e^tdt=c_0+2e^x-2e

y(x)=c(x)ex=2+(c02e)exy(x)=c(x)e^{-x}=2+(c_0-2e)e^{-x}

y(0)=2+c02e=0y(0)=2+c_0-2e=0

c0=2e2c_0=2e-2

y(x)=2+(c02e)ex=22exy(x)=2+(c_0-2e)e^{-x}=2-2e^{-x}

If x>1 then

c(x)=c0+1x0etdt=2e2c(x)=c_0+\int\limits_{1}^{x}0e^tdt=2e-2

y(x)=c(x)ex=(2e2)ex=2e1x2exy(x)=c(x)e^{-x}=(2e-2)e^{-x}=2e^{1-x}-2e^{-x}

Answer.

If 0x10\leq x\leq1 then y(x)=22exy(x)=2-2e^{-x}

If x>1 then y(x)=2e1x2exy(x)=2e^{1-x}-2e^{-x}

It is clear that this function is continuous.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS