Question #199533

Verify that the equations

i) z = √(2x + a) + √(2y+ b)

ii) z2 + μ = 2 (1+λ-1) (x+λy)

are both complete integrals of the PDE z = (1/p) + (1/q).

Also show that the complete integral (ii) is the envelope of the one parameter sub-system obtained by taking b = -( a/λ ) - ( μ/1+λ ) in the solution i).


1
Expert's answer
2021-05-31T16:02:53-0400

1(i)

z=2x+a+2y+pp=zx=222x+a12x+aq=zy=222y+b12y+bz=\sqrt{2x+a}+\sqrt{2y+p}\longrightarrow\\[0.3cm] p=\frac{\partial z}{\partial x}=\frac{2}{2\sqrt{2x+a}}\equiv\frac{1}{\sqrt{2x+a}}\\[0.3cm] q=\frac{\partial z}{\partial y}=\frac{2}{2\sqrt{2y+b}}\equiv\frac{1}{\sqrt{2y+b}}\\[0.3cm]

Then,




1p+1q=112x+a+112y+b1p+1q=2x+a+2y+bz\frac{1}{p}+\frac{1}{q}=\frac{1}{\displaystyle\frac{1}{\sqrt{2x+a}}}+\frac{1}{\displaystyle\frac{1}{\sqrt{2y+b}}}\longrightarrow\\[0.3cm] \frac{1}{p}+\frac{1}{q}=\sqrt{2x+a}+\sqrt{2y+b}\equiv z

Conclusion,




z=2x+a+2y+p1p+1q=z{z=\sqrt{2x+a}+\sqrt{2y+p}\Rightarrow\frac{1}{p}+\frac{1}{q}=z}





1(ii)

z2+μ=2(1+λ1)(x+λy)2zzx=2(1+λ1)p=zx=1+λ1z=λ+1zλ2zzy=2(1+λ1)λq=zy=λ+1zz^2+\mu=2\left(1+\lambda^{-1}\right)(x+\lambda y)\longrightarrow\\[0.3cm] 2z\cdot\frac{\partial z}{\partial x}=2\left(1+\lambda^{-1}\right)\longrightarrow\\[0.3cm] p=\frac{\partial z}{\partial x}=\frac{1+\lambda^{-1}}{z}=\frac{\lambda+1}{z\lambda}\\[0.3cm] 2z\cdot\frac{\partial z}{\partial y}=2\left(1+\lambda^{-1}\right)\lambda\longrightarrow\\[0.3cm] q=\frac{\partial z}{\partial y}=\frac{\lambda+1}{z}\\[0.3cm]



Then,




1p+1q=1λ+1zλ+1λ+1z=zλλ+1+zλ+11p+1q=z(λ+1)λ+1z\frac{1}{p}+\frac{1}{q}=\frac{1}{\displaystyle\frac{\lambda+1}{z\lambda}}+\frac{1}{\displaystyle\frac{\lambda+1}{z}}=\frac{z\lambda}{\lambda+1}+\frac{z}{\lambda+1}\\[0.3cm] \frac{1}{p}+\frac{1}{q}=\frac{z\left(\lambda+1\right)}{\lambda+1}\equiv z

Conclusion,




z2+μ=2(1+λ1)(x+λy)1p+1q=z{z^2+\mu=2\left(1+\lambda^{-1}\right)(x+\lambda y)\Rightarrow\frac{1}{p}+\frac{1}{q}=z}





2. Suppose that b=b(a;λ;μ)b=b(a;\lambda;\mu) , then




a2x+a+2y+bz=0122x+a+122y+bba=02y+b=2x+aba\frac{\partial }{\partial a}\left|\sqrt{2x+a}+\sqrt{2y+b}-z=0\right.\longrightarrow\\[0.3cm] \frac{1}{2\sqrt{2x+a}}+\frac{1}{2\sqrt{2y+b}}\cdot\frac{\partial b}{\partial a}=0\longrightarrow\\[0.3cm] \boxed{\sqrt{2y+b}=-\sqrt{2x+a}\cdot\frac{\partial b}{\partial a}}

Suppose that




b(a;λ;μ)=aλ+Cba=1λb(a;\lambda;\mu)=-\frac{a}{\lambda}+C\longrightarrow\frac{\partial b}{\partial a}=-\frac{1}{\lambda}

Then,




2y+b=2x+a(1λ)2y+b=1λ2x+a[2y+b]2=[1λ2x+a]22y=2x+aλ2b\sqrt{2y+b}=-\sqrt{2x+a}\cdot\left(-\frac{1}{\lambda}\right)\longrightarrow\\[0.3cm] {\sqrt{2y+b}=\frac{1}{\lambda}\cdot\sqrt{2x+a}}\\[0.3cm] \left[\sqrt{2y+b}\right]^2=\left[\frac{1}{\lambda}\cdot\sqrt{2x+a}\right]^2\longrightarrow\\[0.3cm] {2y=\frac{2x+a}{\lambda^2}-b}



Substituting the found relationship in the first equation and express z2z^2 :




z=2x+a+2y+bz=2x+a+1λ2x+az2=(1+1λ)2(2x+a)z=\sqrt{2x+a}+\sqrt{2y+b}\longrightarrow\\[0.3cm] z=\sqrt{2x+a}+\frac{1}{\lambda}\cdot\sqrt{2x+a}\longrightarrow\\[0.3cm] {z^2=\left(1+\frac{1}{\lambda}\right)^2\cdot(2x+a)}




Substituting the found relationship in the second equation :


z2+μ=2(1+1λ)(x+λy)z^ 2 +μ=2(1+ \dfrac{1}{λ} ​ )(x+λy)⟶


(1+λλ)2(2x+a)+μ=2×1+λλ(x+λy)÷1(1+λ)2(\dfrac{1+λ}{λ})^2(2x+a)+ \mu =2\times \dfrac{1+ \lambda}{λ}(x+ λy)| \div \dfrac{1}{(1+ \lambda)^2}


2x+aλ2+μ(1+λ2)=2(x+λy)λ(1+λ)\dfrac{2x+a}{ \lambda^2 }+ \dfrac{ \mu}{(1+ \lambda ^2)} =\dfrac{2(x+ \lambda y)}{\lambda(1+ \lambda)}


2x+aλ2+μ(1+λ)2=2(x+λy)λ(1+λ)\dfrac{2x+a}{\lambda^2}+\dfrac{\mu}{(1+\lambda)^2}=\dfrac{2(x+\lambda y)}{\lambda (1+ \lambda)} \longrightarrow


2x+aλ2+μ1+λ2=2y1+λ+2xλ(1+λ)\dfrac{2x+a}{\lambda^2} + \dfrac{\mu}{1+ \lambda^2}= \dfrac{2y}{1+ \lambda}+ \dfrac{2x}{\lambda(1+\lambda)} \longrightarrow


2x+aλ2+μ1+λ2=2x+aλ2b1+λ+2xλ(1+λ)\dfrac{2x+a}{\lambda^2} + \dfrac{\mu}{1+ \lambda^2}= \dfrac{ \dfrac{2x+a}{\lambda^2}-b}{1+ \lambda} + \dfrac{2x}{\lambda(1+ \lambda)} \longrightarrow


On further solving it will become:


2x+a+2xλ+aλ2xλ2x2aλ2(1+λ)=μ(1+λ)2=b(1+λ)\dfrac{2x+a+2x \lambda +a \lambda-2x \lambda-2x-2a}{\lambda^2(1+\lambda)} = \dfrac{\mu}{(1+ \lambda)^2}= - \dfrac{b}{(1+ \lambda)}


[aλλ2(1+λ)+μ(1+λ)2=b(1+λ)]×[(1+λ)][ \dfrac{a \lambda}{\lambda^2(1+\lambda)}+ \dfrac{\mu}{(1+\lambda)^2}=- \dfrac{b}{(1+ \lambda)}] \times[-(1+ \lambda)]


b=aλμ(1+λ)b= - \dfrac{a}{\lambda} - \dfrac{\mu}{(1+ \lambda)}


Thus,

The complete integral (1ii) is the envelope of one parameter sub-system obtained by taking


b=aλμ(1+λ)b= - \dfrac{a}{\lambda} - \dfrac{\mu}{(1+ \lambda)}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS