Verify that the equations
i) z = √(2x + a) + √(2y+ b)
ii) z2 + μ = 2 (1+λ-1) (x+λy)
are both complete integrals of the PDE z = (1/p) + (1/q).
Also show that the complete integral (ii) is the envelope of the one parameter sub-system obtained by taking b = -( a/λ ) - ( μ/1+λ ) in the solution i).
1(i)
"z=\\sqrt{2x+a}+\\sqrt{2y+p}\\longrightarrow\\\\[0.3cm]\np=\\frac{\\partial z}{\\partial x}=\\frac{2}{2\\sqrt{2x+a}}\\equiv\\frac{1}{\\sqrt{2x+a}}\\\\[0.3cm]\nq=\\frac{\\partial z}{\\partial y}=\\frac{2}{2\\sqrt{2y+b}}\\equiv\\frac{1}{\\sqrt{2y+b}}\\\\[0.3cm]"Then,
Conclusion,
1(ii)
"z^2+\\mu=2\\left(1+\\lambda^{-1}\\right)(x+\\lambda y)\\longrightarrow\\\\[0.3cm]\n2z\\cdot\\frac{\\partial z}{\\partial x}=2\\left(1+\\lambda^{-1}\\right)\\longrightarrow\\\\[0.3cm]\np=\\frac{\\partial z}{\\partial x}=\\frac{1+\\lambda^{-1}}{z}=\\frac{\\lambda+1}{z\\lambda}\\\\[0.3cm]\n2z\\cdot\\frac{\\partial z}{\\partial y}=2\\left(1+\\lambda^{-1}\\right)\\lambda\\longrightarrow\\\\[0.3cm]\nq=\\frac{\\partial z}{\\partial y}=\\frac{\\lambda+1}{z}\\\\[0.3cm]"Then,
Conclusion,
2. Suppose that "b=b(a;\\lambda;\\mu)" , then
Suppose that
Then,
Substituting the found relationship in the first equation and express "z^2" :
Substituting the found relationship in the second equation :
"z^ \n2\n +\u03bc=2(1+ \n\\dfrac{1}{\u03bb}\n\u200b\t\n )(x+\u03bby)\u27f6"
"(\\dfrac{1+\u03bb}{\u03bb})^2(2x+a)+ \\mu =2\\times \\dfrac{1+ \\lambda}{\u03bb}(x+ \u03bby)| \\div \\dfrac{1}{(1+ \\lambda)^2}"
"\\dfrac{2x+a}{ \\lambda^2 }+ \\dfrac{ \\mu}{(1+ \\lambda ^2)} =\\dfrac{2(x+ \\lambda y)}{\\lambda(1+ \\lambda)}"
"\\dfrac{2x+a}{\\lambda^2}+\\dfrac{\\mu}{(1+\\lambda)^2}=\\dfrac{2(x+\\lambda y)}{\\lambda (1+ \\lambda)} \\longrightarrow"
"\\dfrac{2x+a}{\\lambda^2} + \\dfrac{\\mu}{1+ \\lambda^2}= \\dfrac{2y}{1+ \\lambda}+ \\dfrac{2x}{\\lambda(1+\\lambda)} \\longrightarrow"
"\\dfrac{2x+a}{\\lambda^2} + \\dfrac{\\mu}{1+ \\lambda^2}= \\dfrac{ \\dfrac{2x+a}{\\lambda^2}-b}{1+ \\lambda} + \\dfrac{2x}{\\lambda(1+ \\lambda)} \\longrightarrow"
On further solving it will become:
"\\dfrac{2x+a+2x \\lambda +a \\lambda-2x \\lambda-2x-2a}{\\lambda^2(1+\\lambda)} = \\dfrac{\\mu}{(1+ \\lambda)^2}= - \\dfrac{b}{(1+ \\lambda)}"
"[ \\dfrac{a \\lambda}{\\lambda^2(1+\\lambda)}+ \\dfrac{\\mu}{(1+\\lambda)^2}=- \\dfrac{b}{(1+ \\lambda)}] \\times[-(1+ \\lambda)]"
"b= - \\dfrac{a}{\\lambda} - \\dfrac{\\mu}{(1+ \\lambda)}"
Thus,
The complete integral (1ii) is the envelope of one parameter sub-system obtained by taking
"b= - \\dfrac{a}{\\lambda} - \\dfrac{\\mu}{(1+ \\lambda)}"
Comments
Leave a comment