1(i)
z = 2 x + a + 2 y + p ⟶ p = ∂ z ∂ x = 2 2 2 x + a ≡ 1 2 x + a q = ∂ z ∂ y = 2 2 2 y + b ≡ 1 2 y + b z=\sqrt{2x+a}+\sqrt{2y+p}\longrightarrow\\[0.3cm]
p=\frac{\partial z}{\partial x}=\frac{2}{2\sqrt{2x+a}}\equiv\frac{1}{\sqrt{2x+a}}\\[0.3cm]
q=\frac{\partial z}{\partial y}=\frac{2}{2\sqrt{2y+b}}\equiv\frac{1}{\sqrt{2y+b}}\\[0.3cm] z = 2 x + a + 2 y + p ⟶ p = ∂ x ∂ z = 2 2 x + a 2 ≡ 2 x + a 1 q = ∂ y ∂ z = 2 2 y + b 2 ≡ 2 y + b 1 Then,
1 p + 1 q = 1 1 2 x + a + 1 1 2 y + b ⟶ 1 p + 1 q = 2 x + a + 2 y + b ≡ z \frac{1}{p}+\frac{1}{q}=\frac{1}{\displaystyle\frac{1}{\sqrt{2x+a}}}+\frac{1}{\displaystyle\frac{1}{\sqrt{2y+b}}}\longrightarrow\\[0.3cm]
\frac{1}{p}+\frac{1}{q}=\sqrt{2x+a}+\sqrt{2y+b}\equiv z p 1 + q 1 = 2 x + a 1 1 + 2 y + b 1 1 ⟶ p 1 + q 1 = 2 x + a + 2 y + b ≡ z Conclusion,
z = 2 x + a + 2 y + p ⇒ 1 p + 1 q = z {z=\sqrt{2x+a}+\sqrt{2y+p}\Rightarrow\frac{1}{p}+\frac{1}{q}=z} z = 2 x + a + 2 y + p ⇒ p 1 + q 1 = z
1(ii)
z 2 + μ = 2 ( 1 + λ − 1 ) ( x + λ y ) ⟶ 2 z ⋅ ∂ z ∂ x = 2 ( 1 + λ − 1 ) ⟶ p = ∂ z ∂ x = 1 + λ − 1 z = λ + 1 z λ 2 z ⋅ ∂ z ∂ y = 2 ( 1 + λ − 1 ) λ ⟶ q = ∂ z ∂ y = λ + 1 z z^2+\mu=2\left(1+\lambda^{-1}\right)(x+\lambda y)\longrightarrow\\[0.3cm]
2z\cdot\frac{\partial z}{\partial x}=2\left(1+\lambda^{-1}\right)\longrightarrow\\[0.3cm]
p=\frac{\partial z}{\partial x}=\frac{1+\lambda^{-1}}{z}=\frac{\lambda+1}{z\lambda}\\[0.3cm]
2z\cdot\frac{\partial z}{\partial y}=2\left(1+\lambda^{-1}\right)\lambda\longrightarrow\\[0.3cm]
q=\frac{\partial z}{\partial y}=\frac{\lambda+1}{z}\\[0.3cm] z 2 + μ = 2 ( 1 + λ − 1 ) ( x + λ y ) ⟶ 2 z ⋅ ∂ x ∂ z = 2 ( 1 + λ − 1 ) ⟶ p = ∂ x ∂ z = z 1 + λ − 1 = z λ λ + 1 2 z ⋅ ∂ y ∂ z = 2 ( 1 + λ − 1 ) λ ⟶ q = ∂ y ∂ z = z λ + 1
Then,
1 p + 1 q = 1 λ + 1 z λ + 1 λ + 1 z = z λ λ + 1 + z λ + 1 1 p + 1 q = z ( λ + 1 ) λ + 1 ≡ z \frac{1}{p}+\frac{1}{q}=\frac{1}{\displaystyle\frac{\lambda+1}{z\lambda}}+\frac{1}{\displaystyle\frac{\lambda+1}{z}}=\frac{z\lambda}{\lambda+1}+\frac{z}{\lambda+1}\\[0.3cm]
\frac{1}{p}+\frac{1}{q}=\frac{z\left(\lambda+1\right)}{\lambda+1}\equiv z p 1 + q 1 = z λ λ + 1 1 + z λ + 1 1 = λ + 1 z λ + λ + 1 z p 1 + q 1 = λ + 1 z ( λ + 1 ) ≡ z Conclusion,
z 2 + μ = 2 ( 1 + λ − 1 ) ( x + λ y ) ⇒ 1 p + 1 q = z {z^2+\mu=2\left(1+\lambda^{-1}\right)(x+\lambda y)\Rightarrow\frac{1}{p}+\frac{1}{q}=z} z 2 + μ = 2 ( 1 + λ − 1 ) ( x + λ y ) ⇒ p 1 + q 1 = z
2. Suppose that b = b ( a ; λ ; μ ) b=b(a;\lambda;\mu) b = b ( a ; λ ; μ ) , then
∂ ∂ a ∣ 2 x + a + 2 y + b − z = 0 ⟶ 1 2 2 x + a + 1 2 2 y + b ⋅ ∂ b ∂ a = 0 ⟶ 2 y + b = − 2 x + a ⋅ ∂ b ∂ a \frac{\partial }{\partial a}\left|\sqrt{2x+a}+\sqrt{2y+b}-z=0\right.\longrightarrow\\[0.3cm]
\frac{1}{2\sqrt{2x+a}}+\frac{1}{2\sqrt{2y+b}}\cdot\frac{\partial b}{\partial a}=0\longrightarrow\\[0.3cm]
\boxed{\sqrt{2y+b}=-\sqrt{2x+a}\cdot\frac{\partial b}{\partial a}} ∂ a ∂ ∣ ∣ 2 x + a + 2 y + b − z = 0 ⟶ 2 2 x + a 1 + 2 2 y + b 1 ⋅ ∂ a ∂ b = 0 ⟶ 2 y + b = − 2 x + a ⋅ ∂ a ∂ b Suppose that
b ( a ; λ ; μ ) = − a λ + C ⟶ ∂ b ∂ a = − 1 λ b(a;\lambda;\mu)=-\frac{a}{\lambda}+C\longrightarrow\frac{\partial b}{\partial a}=-\frac{1}{\lambda} b ( a ; λ ; μ ) = − λ a + C ⟶ ∂ a ∂ b = − λ 1 Then,
2 y + b = − 2 x + a ⋅ ( − 1 λ ) ⟶ 2 y + b = 1 λ ⋅ 2 x + a [ 2 y + b ] 2 = [ 1 λ ⋅ 2 x + a ] 2 ⟶ 2 y = 2 x + a λ 2 − b \sqrt{2y+b}=-\sqrt{2x+a}\cdot\left(-\frac{1}{\lambda}\right)\longrightarrow\\[0.3cm]
{\sqrt{2y+b}=\frac{1}{\lambda}\cdot\sqrt{2x+a}}\\[0.3cm]
\left[\sqrt{2y+b}\right]^2=\left[\frac{1}{\lambda}\cdot\sqrt{2x+a}\right]^2\longrightarrow\\[0.3cm]
{2y=\frac{2x+a}{\lambda^2}-b} 2 y + b = − 2 x + a ⋅ ( − λ 1 ) ⟶ 2 y + b = λ 1 ⋅ 2 x + a [ 2 y + b ] 2 = [ λ 1 ⋅ 2 x + a ] 2 ⟶ 2 y = λ 2 2 x + a − b
Substituting the found relationship in the first equation and express z 2 z^2 z 2 :
z = 2 x + a + 2 y + b ⟶ z = 2 x + a + 1 λ ⋅ 2 x + a ⟶ z 2 = ( 1 + 1 λ ) 2 ⋅ ( 2 x + a ) z=\sqrt{2x+a}+\sqrt{2y+b}\longrightarrow\\[0.3cm]
z=\sqrt{2x+a}+\frac{1}{\lambda}\cdot\sqrt{2x+a}\longrightarrow\\[0.3cm]
{z^2=\left(1+\frac{1}{\lambda}\right)^2\cdot(2x+a)} z = 2 x + a + 2 y + b ⟶ z = 2 x + a + λ 1 ⋅ 2 x + a ⟶ z 2 = ( 1 + λ 1 ) 2 ⋅ ( 2 x + a )
Substituting the found relationship in the second equation :
z 2 + μ = 2 ( 1 + 1 λ ) ( x + λ y ) ⟶ z^
2
+μ=2(1+
\dfrac{1}{λ}
)(x+λy)⟶ z 2 + μ = 2 ( 1 + λ 1 ) ( x + λ y ) ⟶
( 1 + λ λ ) 2 ( 2 x + a ) + μ = 2 × 1 + λ λ ( x + λ y ) ∣ ÷ 1 ( 1 + λ ) 2 (\dfrac{1+λ}{λ})^2(2x+a)+ \mu =2\times \dfrac{1+ \lambda}{λ}(x+ λy)| \div \dfrac{1}{(1+ \lambda)^2} ( λ 1 + λ ) 2 ( 2 x + a ) + μ = 2 × λ 1 + λ ( x + λ y ) ∣ ÷ ( 1 + λ ) 2 1
2 x + a λ 2 + μ ( 1 + λ 2 ) = 2 ( x + λ y ) λ ( 1 + λ ) \dfrac{2x+a}{ \lambda^2 }+ \dfrac{ \mu}{(1+ \lambda ^2)} =\dfrac{2(x+ \lambda y)}{\lambda(1+ \lambda)} λ 2 2 x + a + ( 1 + λ 2 ) μ = λ ( 1 + λ ) 2 ( x + λ y )
2 x + a λ 2 + μ ( 1 + λ ) 2 = 2 ( x + λ y ) λ ( 1 + λ ) ⟶ \dfrac{2x+a}{\lambda^2}+\dfrac{\mu}{(1+\lambda)^2}=\dfrac{2(x+\lambda y)}{\lambda (1+ \lambda)} \longrightarrow λ 2 2 x + a + ( 1 + λ ) 2 μ = λ ( 1 + λ ) 2 ( x + λ y ) ⟶
2 x + a λ 2 + μ 1 + λ 2 = 2 y 1 + λ + 2 x λ ( 1 + λ ) ⟶ \dfrac{2x+a}{\lambda^2} + \dfrac{\mu}{1+ \lambda^2}= \dfrac{2y}{1+ \lambda}+ \dfrac{2x}{\lambda(1+\lambda)} \longrightarrow λ 2 2 x + a + 1 + λ 2 μ = 1 + λ 2 y + λ ( 1 + λ ) 2 x ⟶
2 x + a λ 2 + μ 1 + λ 2 = 2 x + a λ 2 − b 1 + λ + 2 x λ ( 1 + λ ) ⟶ \dfrac{2x+a}{\lambda^2} + \dfrac{\mu}{1+ \lambda^2}= \dfrac{ \dfrac{2x+a}{\lambda^2}-b}{1+ \lambda} + \dfrac{2x}{\lambda(1+ \lambda)} \longrightarrow λ 2 2 x + a + 1 + λ 2 μ = 1 + λ λ 2 2 x + a − b + λ ( 1 + λ ) 2 x ⟶
On further solving it will become:
2 x + a + 2 x λ + a λ − 2 x λ − 2 x − 2 a λ 2 ( 1 + λ ) = μ ( 1 + λ ) 2 = − b ( 1 + λ ) \dfrac{2x+a+2x \lambda +a \lambda-2x \lambda-2x-2a}{\lambda^2(1+\lambda)} = \dfrac{\mu}{(1+ \lambda)^2}= - \dfrac{b}{(1+ \lambda)} λ 2 ( 1 + λ ) 2 x + a + 2 x λ + aλ − 2 x λ − 2 x − 2 a = ( 1 + λ ) 2 μ = − ( 1 + λ ) b
[ a λ λ 2 ( 1 + λ ) + μ ( 1 + λ ) 2 = − b ( 1 + λ ) ] × [ − ( 1 + λ ) ] [ \dfrac{a \lambda}{\lambda^2(1+\lambda)}+ \dfrac{\mu}{(1+\lambda)^2}=- \dfrac{b}{(1+ \lambda)}] \times[-(1+ \lambda)] [ λ 2 ( 1 + λ ) aλ + ( 1 + λ ) 2 μ = − ( 1 + λ ) b ] × [ − ( 1 + λ )]
b = − a λ − μ ( 1 + λ ) b= - \dfrac{a}{\lambda} - \dfrac{\mu}{(1+ \lambda)} b = − λ a − ( 1 + λ ) μ
Thus,
The complete integral (1ii) is the envelope of one parameter sub-system obtained by taking
b = − a λ − μ ( 1 + λ ) b= - \dfrac{a}{\lambda} - \dfrac{\mu}{(1+ \lambda)} b = − λ a − ( 1 + λ ) μ
Comments