Answer to Question #199533 in Differential Equations for Rajkumar

Question #199533

Verify that the equations

i) z = √(2x + a) + √(2y+ b)

ii) z2 + μ = 2 (1+λ-1) (x+λy)

are both complete integrals of the PDE z = (1/p) + (1/q).

Also show that the complete integral (ii) is the envelope of the one parameter sub-system obtained by taking b = -( a/λ ) - ( μ/1+λ ) in the solution i).


1
Expert's answer
2021-05-31T16:02:53-0400

1(i)

"z=\\sqrt{2x+a}+\\sqrt{2y+p}\\longrightarrow\\\\[0.3cm]\np=\\frac{\\partial z}{\\partial x}=\\frac{2}{2\\sqrt{2x+a}}\\equiv\\frac{1}{\\sqrt{2x+a}}\\\\[0.3cm]\nq=\\frac{\\partial z}{\\partial y}=\\frac{2}{2\\sqrt{2y+b}}\\equiv\\frac{1}{\\sqrt{2y+b}}\\\\[0.3cm]"

Then,




"\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{\\displaystyle\\frac{1}{\\sqrt{2x+a}}}+\\frac{1}{\\displaystyle\\frac{1}{\\sqrt{2y+b}}}\\longrightarrow\\\\[0.3cm]\n\\frac{1}{p}+\\frac{1}{q}=\\sqrt{2x+a}+\\sqrt{2y+b}\\equiv z"

Conclusion,




"{z=\\sqrt{2x+a}+\\sqrt{2y+p}\\Rightarrow\\frac{1}{p}+\\frac{1}{q}=z}"





1(ii)

"z^2+\\mu=2\\left(1+\\lambda^{-1}\\right)(x+\\lambda y)\\longrightarrow\\\\[0.3cm]\n2z\\cdot\\frac{\\partial z}{\\partial x}=2\\left(1+\\lambda^{-1}\\right)\\longrightarrow\\\\[0.3cm]\np=\\frac{\\partial z}{\\partial x}=\\frac{1+\\lambda^{-1}}{z}=\\frac{\\lambda+1}{z\\lambda}\\\\[0.3cm]\n2z\\cdot\\frac{\\partial z}{\\partial y}=2\\left(1+\\lambda^{-1}\\right)\\lambda\\longrightarrow\\\\[0.3cm]\nq=\\frac{\\partial z}{\\partial y}=\\frac{\\lambda+1}{z}\\\\[0.3cm]"



Then,




"\\frac{1}{p}+\\frac{1}{q}=\\frac{1}{\\displaystyle\\frac{\\lambda+1}{z\\lambda}}+\\frac{1}{\\displaystyle\\frac{\\lambda+1}{z}}=\\frac{z\\lambda}{\\lambda+1}+\\frac{z}{\\lambda+1}\\\\[0.3cm]\n\\frac{1}{p}+\\frac{1}{q}=\\frac{z\\left(\\lambda+1\\right)}{\\lambda+1}\\equiv z"

Conclusion,




"{z^2+\\mu=2\\left(1+\\lambda^{-1}\\right)(x+\\lambda y)\\Rightarrow\\frac{1}{p}+\\frac{1}{q}=z}"





2. Suppose that "b=b(a;\\lambda;\\mu)" , then




"\\frac{\\partial }{\\partial a}\\left|\\sqrt{2x+a}+\\sqrt{2y+b}-z=0\\right.\\longrightarrow\\\\[0.3cm]\n\\frac{1}{2\\sqrt{2x+a}}+\\frac{1}{2\\sqrt{2y+b}}\\cdot\\frac{\\partial b}{\\partial a}=0\\longrightarrow\\\\[0.3cm]\n\\boxed{\\sqrt{2y+b}=-\\sqrt{2x+a}\\cdot\\frac{\\partial b}{\\partial a}}"

Suppose that




"b(a;\\lambda;\\mu)=-\\frac{a}{\\lambda}+C\\longrightarrow\\frac{\\partial b}{\\partial a}=-\\frac{1}{\\lambda}"

Then,




"\\sqrt{2y+b}=-\\sqrt{2x+a}\\cdot\\left(-\\frac{1}{\\lambda}\\right)\\longrightarrow\\\\[0.3cm]\n{\\sqrt{2y+b}=\\frac{1}{\\lambda}\\cdot\\sqrt{2x+a}}\\\\[0.3cm]\n\\left[\\sqrt{2y+b}\\right]^2=\\left[\\frac{1}{\\lambda}\\cdot\\sqrt{2x+a}\\right]^2\\longrightarrow\\\\[0.3cm]\n{2y=\\frac{2x+a}{\\lambda^2}-b}"



Substituting the found relationship in the first equation and express "z^2" :




"z=\\sqrt{2x+a}+\\sqrt{2y+b}\\longrightarrow\\\\[0.3cm]\nz=\\sqrt{2x+a}+\\frac{1}{\\lambda}\\cdot\\sqrt{2x+a}\\longrightarrow\\\\[0.3cm]\n{z^2=\\left(1+\\frac{1}{\\lambda}\\right)^2\\cdot(2x+a)}"




Substituting the found relationship in the second equation :


"z^ \n2\n +\u03bc=2(1+ \n\\dfrac{1}{\u03bb}\n\u200b\t\n )(x+\u03bby)\u27f6"


"(\\dfrac{1+\u03bb}{\u03bb})^2(2x+a)+ \\mu =2\\times \\dfrac{1+ \\lambda}{\u03bb}(x+ \u03bby)| \\div \\dfrac{1}{(1+ \\lambda)^2}"


"\\dfrac{2x+a}{ \\lambda^2 }+ \\dfrac{ \\mu}{(1+ \\lambda ^2)} =\\dfrac{2(x+ \\lambda y)}{\\lambda(1+ \\lambda)}"


"\\dfrac{2x+a}{\\lambda^2}+\\dfrac{\\mu}{(1+\\lambda)^2}=\\dfrac{2(x+\\lambda y)}{\\lambda (1+ \\lambda)} \\longrightarrow"


"\\dfrac{2x+a}{\\lambda^2} + \\dfrac{\\mu}{1+ \\lambda^2}= \\dfrac{2y}{1+ \\lambda}+ \\dfrac{2x}{\\lambda(1+\\lambda)} \\longrightarrow"


"\\dfrac{2x+a}{\\lambda^2} + \\dfrac{\\mu}{1+ \\lambda^2}= \\dfrac{ \\dfrac{2x+a}{\\lambda^2}-b}{1+ \\lambda} + \\dfrac{2x}{\\lambda(1+ \\lambda)} \\longrightarrow"


On further solving it will become:


"\\dfrac{2x+a+2x \\lambda +a \\lambda-2x \\lambda-2x-2a}{\\lambda^2(1+\\lambda)} = \\dfrac{\\mu}{(1+ \\lambda)^2}= - \\dfrac{b}{(1+ \\lambda)}"


"[ \\dfrac{a \\lambda}{\\lambda^2(1+\\lambda)}+ \\dfrac{\\mu}{(1+\\lambda)^2}=- \\dfrac{b}{(1+ \\lambda)}] \\times[-(1+ \\lambda)]"


"b= - \\dfrac{a}{\\lambda} - \\dfrac{\\mu}{(1+ \\lambda)}"


Thus,

The complete integral (1ii) is the envelope of one parameter sub-system obtained by taking


"b= - \\dfrac{a}{\\lambda} - \\dfrac{\\mu}{(1+ \\lambda)}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS