Question #199545

Suppose the temperature of a body when discovered is 85o F. Two hours later, the 

temperature is 74o F and the room temperature is 68o F. Find the time when the body was discovered after death (assume the body temperature to be 98.6o F at the time of death.)


1
Expert's answer
2021-06-03T12:39:06-0400

Newton's law of cooling states that the temperature of a body changes at a rate proportional to the difference in temperature between the body and its surroundings.

Let T0T_0 be the initial temperature of a body and TT be the temperature of the body at time tt . If TsT_s be the temperature of the surroundings, then Newton's law of cooling states that

dTdt=k(TTs)\frac{dT}{dt}=-k(T-T_s) ,

where kk is a positive constant.

dTTTs=kdt\Rightarrow \frac{dT}{ T-T_s}=-kdt

Integrating both sides,

T0TdTTTs=k0tdt\int_{T_0}^T \frac{dT}{ T-T_s}=-k\int _0^tdt

[ln(TTs)]T0T=ktln(TTsT0Ts)=ktTTsT0Ts=ekt ...............(1)\Rightarrow[ ln(T-T_s)]_{T_0}^T=-kt\\ \Rightarrow ln(\frac{T-T_s}{T_0-T_s})=-kt\\ \Rightarrow \frac{T-T_s}{T_0-T_s}=e^{-kt}\ ...............(1)

In the given problem, initial temperature T0=98.6°FT_0=98.6\degree F ( temperature of the body at the time of death t=0)t=0)

and surrounding temperature Ts=68°FT_s=68\degree F ( room temperature).

Let at t=t1t=t_1 the body was discovered and its temperature was T1=85°FT_1=85\degree F

From Eq.(1),

T1TsT0Ts=ekt1 ...............(2)\frac{T_1-T_s}{T_0-T_s}=e^{-kt_1}\ ...............(2)

After two hours at t=t1+2t=t_1+2 the temperature of the body is T2=74°FT_2=74\degree F

From Eq.(1),

T2TsT0Ts=ek(t1+2) ...............(3)\frac{T_2-T_s}{T_0-T_s}=e^{-k(t_1+2)}\ ...............(3)

Dividing Eq.(2) by Eq.(3),

T1TsT2Ts=ekt1ek(t1+2)T1TsT2Ts=e2kk=12ln(T1TsT2Ts)k=12ln(85687468)k=0.52\frac{T_1-T_s}{T_2-T_s}=\frac{e^{-kt_1}}{e^{-k(t_1+2)}}\\ \Rightarrow \frac{T_1-T_s}{T_2-T_s}=e^{2k}\\ \Rightarrow k=\frac{1}{2}ln(\frac{T_1-T_s}{T_2-T_s})\\ \Rightarrow k=\frac{1}{2}ln(\frac{85-68}{74-68})\\ \Rightarrow k=0.52

Substitute the values of k,T1,Ts,T0k, T_1, T_s, T_0 in Eq.(2), we will get t1t_1 .

856898.668=e0.52t1\therefore \frac{85-68}{98.6-68}=e^{-0.52t_1}

On simplification, t1=1.13 hourst_1=1.13\ hours

Therefore, the body was discovered 1.13 hours after death.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS