Answer to Question #199527 in Differential Equations for Rajkumar

Question #199527

Using the method of undetermined coefficients, find the general solution of the DE

yiv - 2y''' + 2y'' = 3e-x + 2e-x x + e-x sinx

1
Expert's answer
2021-05-31T19:25:11-0400

Using the method of undermined coefficients, find the general solution of the differential equation y^iv-2y'''+2y''=3e^-x+2e^-xx+e^-x sin x

"y \niv\n \u22122y \n\u2032\u2032\u2032\n +2y \n\u2032\u2032\n =3e ^\n{\u2212x}\n +2e ^\n{\u2212x}\n x+e ^\n{\u2212x}\n sinx"


solution

To determine the general solution needed find a complementary and partial solutions. First, determine a partial solution.

Rewrite the right part of the equation as

"f(x)=(3+2x)e^ \n{\u2212x}\n +e^ \n{\u2212x}\n sinx"


Therefore, a partial solution of the equation have a form

"y_ \np\n\u200b\t\n (x)=(A+Bx)e ^\n{\u2212x}\n +e ^\n{\u2212x}\n (Csinx+Dcosx)"

Find the derivatives.

"y_ \np\n\u2032\n\u200b\t\n =Be^ \n{\u2212x}\n \u2212(A+Bx)e^ \n{\u2212x}\n \u2212e ^\n{\u2212x}\n ((C+D)sinx\u2212(C\u2212D)cosx)"

"y_ \np\n\u2032\u2032\n\u200b\t\n =\u22122Be^ \n{\u2212x}\n +(A+Bx)e^ \n{\u2212x}\n +e^ \n{\u2212x}\n (2Dsinx\u22122Ccosx)"

"y_ \np\n\u2032\u2032\u2032\n\u200b\t\n =3Be^ \n{\u2212x}\n \u2212(A+Bx)e^ \n{\u2212x}\n +e^ \n{\u2212x}\n ((2C\u22122D)sinx+(2C+2D)cosx)"

"y_ \np\niv\n\u200b\t\n =\u22124Be^ \n{\u2212x}\n +(A+Bx)e^ \n{\u2212x}\n \u2212e^ \n{\u2212x}\n (4Csinx+4Dcosx)"

Substituting these into the equation, obtain

"\u221214Be ^\n{\u2212x}\n +5(A+Bx)e^ \n{\u2212x}\n +e^ \n{\u2212x}\n ((8D\u22128C)sinx\u2212(8D+8C)cosx)\n=3e^ \n{\u2212x}\n +2xe^ \n{\u2212x}\n +e^ \n{x}\n sinx"

Rewrite the left part.

"(5A\u221214B)e ^\n{\u2212x}\n +5Bxe ^\n{\u2212x}\n +e^ \n{\u2212x}\n ((8D\u22128C)sinx\u2212(8D+8C)cosx)\n=3e^ \n{\u2212x}\n +2xe^ \n{\u2212x}\n +e^ \n{x}\n sinx"

Therefore,

"5A\u221214B=3"

"5B=2"

"8D\u22128C=1"

"\u22128D\u22128C=0"

Solving these linear system, get that "A= {43 \\above{2pt} 25}\n\u200b\t\n ,B= 2\/5\n\n\u200b\t\n ,C=\u22121\/ \n16\n\n\u200b" and "D=1\/16"

Thus, the partial solution is

"y_ \np\n\u200b\t\n (x)=( {43 \\above{2pt} 25}\n\n\u200b\t\n + {2 \\above{2pt} 5}\n\n\u200b\t\n x)e^ \n{\u2212x}\n +e^ \n{\u2212x}\n ({1 \\above{2pt} 16}\n\n\u200b\t\n cosx\u2212 \n{1 \\above{2pt} 16}\n\u200b\t\n sinx)"

Now, determine a complementary solution. Solve the characteristic equation.

"\u03bb^ \n4\n \u22122\u03bb^ \n3\n +2\u03bb ^\n2\n =0"

"\u03bb^ \n2\n (\u03bb^ \n2\n \u22122\u03bb+2)=0"


This equation have the roots "\u03bb=0" (multiplicity 2) and "\u03bb=1\u00b1i" .Therefore, the complementary solution is

"y \nc\n\u200b\t\n (x)=C_ \n1\n\u200b\t\n +C _\n2\n\u200b\t\n x+C _\n3\n\u200b\t\n e ^\n{x}\n cosx+C_ \n4\n\u200b\t\n e ^\n{x}\n sinx"


So, the general solution is

"y(x)=" "C_ \n1\n\u200b\t\n +C _\n2\n\u200b\t\n x+C _\n3\n\u200b\t\n e ^\n{x}\n cosx+C_ \n4\n\u200b\t\n e ^\n{x}\n sinx" +"( {43 \\above{2pt} 25}\n\n\u200b\t\n + {2 \\above{2pt} 5}\n\n\u200b\t\n x)e^ \n{\u2212x}\n +e^ \n{\u2212x}\n ({1 \\above{2pt} 16}\n\n\u200b\t\n cosx\u2212 \n{1 \\above{2pt} 16}\n\u200b\t\n sinx)"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS