1.
e−2√x/x−y/x=dy/dx 
y′+x1y=e−2√x/x 
P=x1,Q=e−2√x/x 
I.F.=e∫Pdx=e∫x1dx=e2√x 
ye2√x=∫Q⋅I.F.dx=∫xe−2√xe2√xdx=∫x1dx=2x+c 
2.
y′/y6+y−5/x=x2 
y−5=v 
−5y′/y6=v′ 
v′−5v/x=−5x2 
IF=e−5∫dx/x=1/x5 
v⋅IF=∫Q⋅IFdx 
(xy)51=−5∫dx/x3 
(xy)51=2x25+c 
x3y51=25+c=c1 
3.
dr/dx=−r2/cosx 
−dr/r2=dx/cosx 
1/r=ln(tanx+secx)+c 
4.
 dx/dy−x/y=−x2siny 
u(y)=x(y)/y,x′=yu′+u 
then:
y2u2siny+yu′=0 
u′/u2=−ysiny 
−1/u=ycosy−siny+c 
−y/x=ycosy−siny+c 
Comments