1.
e−2√x/x−y/x=dy/dx
y′+x1y=e−2√x/x
P=x1,Q=e−2√x/x
I.F.=e∫Pdx=e∫x1dx=e2√x
ye2√x=∫Q⋅I.F.dx=∫xe−2√xe2√xdx=∫x1dx=2x+c
2.
y′/y6+y−5/x=x2
y−5=v
−5y′/y6=v′
v′−5v/x=−5x2
IF=e−5∫dx/x=1/x5
v⋅IF=∫Q⋅IFdx
(xy)51=−5∫dx/x3
(xy)51=2x25+c
x3y51=25+c=c1
3.
dr/dx=−r2/cosx
−dr/r2=dx/cosx
1/r=ln(tanx+secx)+c
4.
dx/dy−x/y=−x2siny
u(y)=x(y)/y,x′=yu′+u
then:
y2u2siny+yu′=0
u′/u2=−ysiny
−1/u=ycosy−siny+c
−y/x=ycosy−siny+c
Comments