Question #199327
  1. [(e/√x -2√x) - y/√x] = dy/dx
  2. xdy/dx +y=x3y6
  3. dr/dx = tyanchya - r2/coax
  4. y dx/dy = x-yx2siny
1
Expert's answer
2022-01-10T16:41:50-0500

1.

e2x/xy/x=dy/dxe^{ -2√x}/\sqrt x - y/\sqrt x = dy/dx


y+1xy=e2x/xy'+\frac{1}{\sqrt{x}}y=e^{ -2√x}/\sqrt x


P=1x,Q=e2x/xP=\frac{1}{\sqrt{x}},Q=e^{ -2√x}/\sqrt x


I.F.=ePdx=e1xdx=e2xI.F.=e^{\int Pdx}=e^{\int \frac{1}{\sqrt{x}}dx}=e^{ 2√x}


ye2x=QI.F.dx=e2xxe2xdx=1xdx=2x+cye^{ 2√x}=\int Q\cdot I.F.dx=\int \frac{e^{- 2√x}}{\sqrt{x}}e^{ 2√x}dx=\int \frac{1}{\sqrt{x}}dx=2\sqrt x+c


2.

y/y6+y5/x=x2y'/y^6+y^{-5}/x=x^2

y5=vy^{-5}=v

5y/y6=v-5y'/y^6=v'

v5v/x=5x2v'-5v/x=-5x^2

IF=e5dx/x=1/x5IF=e^{-5\int dx/x}=1/x^5


vIF=QIFdxv\cdot IF=\int Q\cdot IF dx


1(xy)5=5dx/x3\frac{1}{(xy)^5}=-5\int dx/x^3


1(xy)5=52x2+c\frac{1}{(xy)^5}=\frac{5}{2x^2}+c


1x3y5=52+c=c1\frac{1}{x^3y^5}=\frac{5}{2}+c=c_1


3.

dr/dx=r2/cosxdr/dx=-r^2/cosx

dr/r2=dx/cosx-dr/r^2=dx/cosx


1/r=ln(tanx+secx)+c1/r=ln(tanx+secx)+c


4.

dx/dyx/y=x2sinydx/dy-x/y=-x^2siny

u(y)=x(y)/y,x=yu+uu(y)=x(y)/y,x'=yu'+u

then:

y2u2siny+yu=0y^2u^2siny+yu'=0

u/u2=ysinyu'/u^2=-ysiny


1/u=ycosysiny+c-1/u=ycosy-siny+c

y/x=ycosysiny+c-y/x=ycosy-siny+c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS