Answer to Question #199326 in Differential Equations for Anushka Bhasme

Question #199326
  1. (x2-4xy-2y2)dx + (y2-4xy-2x2)dy=0
  2. (x2-xtan2y+sec2y)dy = (tany-2xy-y)dx
  3. (2xy4ey+2xy3+y)dx + (x2y4ey-x2y2-3x)dy=0
  4. (y/x secy-tany)dx+(secy logx-x)dy=0
  5. y dy/dx +4x/3 -y2/3x =0
1
Expert's answer
2021-06-01T03:34:54-0400

Solutions:-

1.

"P(x,y)=x^2-4xy-2y^2"

"Q(x,y)=y^2--4xy-2x^2"

"\\frac{\\partial P(x,y)}{\\partial y}=\\frac{\\partial Q(x,y)}{\\partial x}=-4x-4y"

"\\frac{\\partial f(x,y)}{\\partial x}=P(x,y)"

"\\frac{\\partial f(x,y)}{\\partial y}=Q(x,y)"


"f(x,y)=\\int(x^2-4xy-2y^2)dx=x^3\/3-2x^2y-2xy^2+g(y)"

"\\frac{\\partial f(x,y)}{\\partial y}=\\frac{\\partial }{\\partial y}(x^3\/3-2x^2y-2xy^2+g(y))=-2x^2-4xy+\\frac{dg(y)}{dy}"

"-2x^2-4xy+\\frac{dg(y)}{dy}=-2x^2-4xy+y^2"

"\\frac{dg(y)}{dy}=y^2"

"g(y)=y^3\/3"

"f(x,y)=x^3\/3-2x^2y-2xy^2+y^3\/3"


The solution is "f(x,y)=c"

"x^3\/3-2x^2y-2xy^2+y^3\/3=c"


2.

"P(x,y)=y+2xy-tany"

"Q(x,y)=x^2--sec^2y-xtan^2y"

"\\frac{\\partial P(x,y)}{\\partial y}=\\frac{\\partial Q(x,y)}{\\partial x}=2x-sec^2y+1"

"\\frac{\\partial f(x,y)}{\\partial x}=P(x,y)"

"\\frac{\\partial f(x,y)}{\\partial y}=Q(x,y)"


"f(x,y)=\\int(y+2xy-tany)dx=xy+x^2y-xtany+g(y)"

"\\frac{\\partial f(x,y)}{\\partial y}=\\frac{\\partial }{\\partial y}(xy+x^2y-xtany+g(y))=x+x^2-xsec^2y+\\frac{dg(y)}{dy}"

"x+x^2-xsec^2y+\\frac{dg(y)}{dy}=x^2--sec^2y-xtan^2y"

"\\frac{dg(y)}{dy}=-sec^2y"

"g(y)=-tany"


"f(x,y)=xy+x^2y-tany-xtany"

"xy+x^2y-tany-xtany=c"


5.

"\\frac{3yy'}{y^2-4}=x"


"\\int\\frac{3ydy}{y^2-4}=\\int xdx"


"3ln(y^2-4)=x^2+c_1"

"y=\\sqrt{ce^{x^2\/3}+4}"


3.

"Mdx+Ndy=0"

"M=2xy^4e^y+2xy^3+y"

"N=x^2y^4e^y-x^2y^2-3x"

"\\frac{\\partial M}{\\partial y}=2x(y^4e^y+4y^3e^y)+6xy^2+1"

"\\frac{\\partial N}{\\partial x}=2xy^4e^y-2xy^2-3"


"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=\\frac{-8xy^2-4-8xy^3e^y}{2xy^4e^y+2xy^3+y}=-\\frac{4}{y}"


Integrating factor:

"e^{\\int(-4\/y)dy}=1\/y^4"

Multiplying by the I.f. we get:

"(2xe^y+2x\/y+1\/y^3)dx+(x^2e^y-x^2y^2-3x\/y^4)dy=0"

which is exact.

Then:

"\\int (2xe^y+2x\/y+1\/y^3)dx=x^2e^y+x^2\/y+x\/y^3"


Solution:

"x^2e^y+x^2\/y+x\/y^3=c"


4.

"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=-tany"

I.f.:

"e^{\\int-tanydy}=cosy"


Then:

"(y\/x secy-tany)cosydx+(secy logx-x)cosydy=0"

"(y\/x-sinx)dx-(xcosy-logx)dy=0"

"\\int (y\/x-sinx)dx=ylogx-xsiny"


Solution:

"ylogx-xsiny=c"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS