Solutions:-
1.
"P(x,y)=x^2-4xy-2y^2"
"Q(x,y)=y^2--4xy-2x^2"
"\\frac{\\partial P(x,y)}{\\partial y}=\\frac{\\partial Q(x,y)}{\\partial x}=-4x-4y"
"\\frac{\\partial f(x,y)}{\\partial x}=P(x,y)"
"\\frac{\\partial f(x,y)}{\\partial y}=Q(x,y)"
"f(x,y)=\\int(x^2-4xy-2y^2)dx=x^3\/3-2x^2y-2xy^2+g(y)"
"\\frac{\\partial f(x,y)}{\\partial y}=\\frac{\\partial }{\\partial y}(x^3\/3-2x^2y-2xy^2+g(y))=-2x^2-4xy+\\frac{dg(y)}{dy}"
"-2x^2-4xy+\\frac{dg(y)}{dy}=-2x^2-4xy+y^2"
"\\frac{dg(y)}{dy}=y^2"
"g(y)=y^3\/3"
"f(x,y)=x^3\/3-2x^2y-2xy^2+y^3\/3"
The solution is "f(x,y)=c"
"x^3\/3-2x^2y-2xy^2+y^3\/3=c"
2.
"P(x,y)=y+2xy-tany"
"Q(x,y)=x^2--sec^2y-xtan^2y"
"\\frac{\\partial P(x,y)}{\\partial y}=\\frac{\\partial Q(x,y)}{\\partial x}=2x-sec^2y+1"
"\\frac{\\partial f(x,y)}{\\partial x}=P(x,y)"
"\\frac{\\partial f(x,y)}{\\partial y}=Q(x,y)"
"f(x,y)=\\int(y+2xy-tany)dx=xy+x^2y-xtany+g(y)"
"\\frac{\\partial f(x,y)}{\\partial y}=\\frac{\\partial }{\\partial y}(xy+x^2y-xtany+g(y))=x+x^2-xsec^2y+\\frac{dg(y)}{dy}"
"x+x^2-xsec^2y+\\frac{dg(y)}{dy}=x^2--sec^2y-xtan^2y"
"\\frac{dg(y)}{dy}=-sec^2y"
"g(y)=-tany"
"f(x,y)=xy+x^2y-tany-xtany"
"xy+x^2y-tany-xtany=c"
5.
"\\frac{3yy'}{y^2-4}=x"
"\\int\\frac{3ydy}{y^2-4}=\\int xdx"
"3ln(y^2-4)=x^2+c_1"
"y=\\sqrt{ce^{x^2\/3}+4}"
3.
"Mdx+Ndy=0"
"M=2xy^4e^y+2xy^3+y"
"N=x^2y^4e^y-x^2y^2-3x"
"\\frac{\\partial M}{\\partial y}=2x(y^4e^y+4y^3e^y)+6xy^2+1"
"\\frac{\\partial N}{\\partial x}=2xy^4e^y-2xy^2-3"
"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=\\frac{-8xy^2-4-8xy^3e^y}{2xy^4e^y+2xy^3+y}=-\\frac{4}{y}"
Integrating factor:
"e^{\\int(-4\/y)dy}=1\/y^4"
Multiplying by the I.f. we get:
"(2xe^y+2x\/y+1\/y^3)dx+(x^2e^y-x^2y^2-3x\/y^4)dy=0"
which is exact.
Then:
"\\int (2xe^y+2x\/y+1\/y^3)dx=x^2e^y+x^2\/y+x\/y^3"
Solution:
"x^2e^y+x^2\/y+x\/y^3=c"
4.
"\\frac{\\frac{\\partial M}{\\partial y}-\\frac{\\partial N}{\\partial x}}{M}=-tany"
I.f.:
"e^{\\int-tanydy}=cosy"
Then:
"(y\/x secy-tany)cosydx+(secy logx-x)cosydy=0"
"(y\/x-sinx)dx-(xcosy-logx)dy=0"
"\\int (y\/x-sinx)dx=ylogx-xsiny"
Solution:
"ylogx-xsiny=c"
Comments
Leave a comment