Solutions:-
1.
P(x,y)=x2−4xy−2y2
Q(x,y)=y2−−4xy−2x2
∂y∂P(x,y)=∂x∂Q(x,y)=−4x−4y
∂x∂f(x,y)=P(x,y)
∂y∂f(x,y)=Q(x,y)
f(x,y)=∫(x2−4xy−2y2)dx=x3/3−2x2y−2xy2+g(y)
∂y∂f(x,y)=∂y∂(x3/3−2x2y−2xy2+g(y))=−2x2−4xy+dydg(y)
−2x2−4xy+dydg(y)=−2x2−4xy+y2
dydg(y)=y2
g(y)=y3/3
f(x,y)=x3/3−2x2y−2xy2+y3/3
The solution is f(x,y)=c
x3/3−2x2y−2xy2+y3/3=c
2.
P(x,y)=y+2xy−tany
Q(x,y)=x2−−sec2y−xtan2y
∂y∂P(x,y)=∂x∂Q(x,y)=2x−sec2y+1
∂x∂f(x,y)=P(x,y)
∂y∂f(x,y)=Q(x,y)
f(x,y)=∫(y+2xy−tany)dx=xy+x2y−xtany+g(y)
∂y∂f(x,y)=∂y∂(xy+x2y−xtany+g(y))=x+x2−xsec2y+dydg(y)
x+x2−xsec2y+dydg(y)=x2−−sec2y−xtan2y
dydg(y)=−sec2y
g(y)=−tany
f(x,y)=xy+x2y−tany−xtany
xy+x2y−tany−xtany=c
5.
y2−43yy′=x
∫y2−43ydy=∫xdx
3ln(y2−4)=x2+c1
y=cex2/3+4
3.
Mdx+Ndy=0
M=2xy4ey+2xy3+y
N=x2y4ey−x2y2−3x
∂y∂M=2x(y4ey+4y3ey)+6xy2+1
∂x∂N=2xy4ey−2xy2−3
M∂y∂M−∂x∂N=2xy4ey+2xy3+y−8xy2−4−8xy3ey=−y4
Integrating factor:
e∫(−4/y)dy=1/y4
Multiplying by the I.f. we get:
(2xey+2x/y+1/y3)dx+(x2ey−x2y2−3x/y4)dy=0
which is exact.
Then:
∫(2xey+2x/y+1/y3)dx=x2ey+x2/y+x/y3
Solution:
x2ey+x2/y+x/y3=c
4.
M∂y∂M−∂x∂N=−tany
I.f.:
e∫−tanydy=cosy
Then:
(y/xsecy−tany)cosydx+(secylogx−x)cosydy=0
(y/x−sinx)dx−(xcosy−logx)dy=0
∫(y/x−sinx)dx=ylogx−xsiny
Solution:
ylogx−xsiny=c
Comments