Question #199326
  1. (x2-4xy-2y2)dx + (y2-4xy-2x2)dy=0
  2. (x2-xtan2y+sec2y)dy = (tany-2xy-y)dx
  3. (2xy4ey+2xy3+y)dx + (x2y4ey-x2y2-3x)dy=0
  4. (y/x secy-tany)dx+(secy logx-x)dy=0
  5. y dy/dx +4x/3 -y2/3x =0
1
Expert's answer
2021-06-01T03:34:54-0400

Solutions:-

1.

P(x,y)=x24xy2y2P(x,y)=x^2-4xy-2y^2

Q(x,y)=y24xy2x2Q(x,y)=y^2--4xy-2x^2

P(x,y)y=Q(x,y)x=4x4y\frac{\partial P(x,y)}{\partial y}=\frac{\partial Q(x,y)}{\partial x}=-4x-4y

f(x,y)x=P(x,y)\frac{\partial f(x,y)}{\partial x}=P(x,y)

f(x,y)y=Q(x,y)\frac{\partial f(x,y)}{\partial y}=Q(x,y)


f(x,y)=(x24xy2y2)dx=x3/32x2y2xy2+g(y)f(x,y)=\int(x^2-4xy-2y^2)dx=x^3/3-2x^2y-2xy^2+g(y)

f(x,y)y=y(x3/32x2y2xy2+g(y))=2x24xy+dg(y)dy\frac{\partial f(x,y)}{\partial y}=\frac{\partial }{\partial y}(x^3/3-2x^2y-2xy^2+g(y))=-2x^2-4xy+\frac{dg(y)}{dy}

2x24xy+dg(y)dy=2x24xy+y2-2x^2-4xy+\frac{dg(y)}{dy}=-2x^2-4xy+y^2

dg(y)dy=y2\frac{dg(y)}{dy}=y^2

g(y)=y3/3g(y)=y^3/3

f(x,y)=x3/32x2y2xy2+y3/3f(x,y)=x^3/3-2x^2y-2xy^2+y^3/3


The solution is f(x,y)=cf(x,y)=c

x3/32x2y2xy2+y3/3=cx^3/3-2x^2y-2xy^2+y^3/3=c


2.

P(x,y)=y+2xytanyP(x,y)=y+2xy-tany

Q(x,y)=x2sec2yxtan2yQ(x,y)=x^2--sec^2y-xtan^2y

P(x,y)y=Q(x,y)x=2xsec2y+1\frac{\partial P(x,y)}{\partial y}=\frac{\partial Q(x,y)}{\partial x}=2x-sec^2y+1

f(x,y)x=P(x,y)\frac{\partial f(x,y)}{\partial x}=P(x,y)

f(x,y)y=Q(x,y)\frac{\partial f(x,y)}{\partial y}=Q(x,y)


f(x,y)=(y+2xytany)dx=xy+x2yxtany+g(y)f(x,y)=\int(y+2xy-tany)dx=xy+x^2y-xtany+g(y)

f(x,y)y=y(xy+x2yxtany+g(y))=x+x2xsec2y+dg(y)dy\frac{\partial f(x,y)}{\partial y}=\frac{\partial }{\partial y}(xy+x^2y-xtany+g(y))=x+x^2-xsec^2y+\frac{dg(y)}{dy}

x+x2xsec2y+dg(y)dy=x2sec2yxtan2yx+x^2-xsec^2y+\frac{dg(y)}{dy}=x^2--sec^2y-xtan^2y

dg(y)dy=sec2y\frac{dg(y)}{dy}=-sec^2y

g(y)=tanyg(y)=-tany


f(x,y)=xy+x2ytanyxtanyf(x,y)=xy+x^2y-tany-xtany

xy+x2ytanyxtany=cxy+x^2y-tany-xtany=c


5.

3yyy24=x\frac{3yy'}{y^2-4}=x


3ydyy24=xdx\int\frac{3ydy}{y^2-4}=\int xdx


3ln(y24)=x2+c13ln(y^2-4)=x^2+c_1

y=cex2/3+4y=\sqrt{ce^{x^2/3}+4}


3.

Mdx+Ndy=0Mdx+Ndy=0

M=2xy4ey+2xy3+yM=2xy^4e^y+2xy^3+y

N=x2y4eyx2y23xN=x^2y^4e^y-x^2y^2-3x

My=2x(y4ey+4y3ey)+6xy2+1\frac{\partial M}{\partial y}=2x(y^4e^y+4y^3e^y)+6xy^2+1

Nx=2xy4ey2xy23\frac{\partial N}{\partial x}=2xy^4e^y-2xy^2-3


MyNxM=8xy248xy3ey2xy4ey+2xy3+y=4y\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}=\frac{-8xy^2-4-8xy^3e^y}{2xy^4e^y+2xy^3+y}=-\frac{4}{y}


Integrating factor:

e(4/y)dy=1/y4e^{\int(-4/y)dy}=1/y^4

Multiplying by the I.f. we get:

(2xey+2x/y+1/y3)dx+(x2eyx2y23x/y4)dy=0(2xe^y+2x/y+1/y^3)dx+(x^2e^y-x^2y^2-3x/y^4)dy=0

which is exact.

Then:

(2xey+2x/y+1/y3)dx=x2ey+x2/y+x/y3\int (2xe^y+2x/y+1/y^3)dx=x^2e^y+x^2/y+x/y^3


Solution:

x2ey+x2/y+x/y3=cx^2e^y+x^2/y+x/y^3=c


4.

MyNxM=tany\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{M}=-tany

I.f.:

etanydy=cosye^{\int-tanydy}=cosy


Then:

(y/xsecytany)cosydx+(secylogxx)cosydy=0(y/x secy-tany)cosydx+(secy logx-x)cosydy=0

(y/xsinx)dx(xcosylogx)dy=0(y/x-sinx)dx-(xcosy-logx)dy=0

(y/xsinx)dx=ylogxxsiny\int (y/x-sinx)dx=ylogx-xsiny


Solution:

ylogxxsiny=cylogx-xsiny=c

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS