Answer to Question #197448 in Differential Equations for M Kamran

Question #197448

Find the Laplace Transform of half-wave and full-wave

rectified sine wave given in the following figures.

Take w = 2


1
Expert's answer
2021-05-24T16:08:42-0400

f(t)=sinωtf(t)=sin\omega t ,


For full wave-


L[sinωt]=11e2πiω02πestsinωtdtL[sin\omega t]=\dfrac{1}{1-e^{-\frac{2\pi i}{\omega}}} \int_0^{2\pi} e^{-st} sin\omega t dt


        =11e2πiω(ests2+ω2[ssinωtωcosωt])0πω=\dfrac{1}{1-e^{-\frac{2\pi i}{\omega}}} (\dfrac{e^{-st}}{s^2+\omega^2}[-s sin\omega t -\omega cos\omega t])_0^{\frac{\pi}{\omega}}

 

        =11e2πiω(esπωω+ωs2+ω2)=\dfrac{1}{1-e^{-\frac{2\pi i}{\omega}}} (\dfrac{e^{-\frac{s\pi}{\omega}} \omega+\omega}{s^2+\omega^2})


       =ω(1eπiω)(s2+ω2)=\dfrac{\omega}{(1-e^{-\frac{\pi i}{\omega}} )(s^2+\omega^2)}


For half wave-


L[sinωt]=11e2πiω0πestsinωtdtL[sin\omega t]=\dfrac{1}{1-e^{-\frac{2\pi i}{\omega}}} \int_0^{\pi} e^{-st} sin\omega t dt


        =11e2πiω(ests2+ω2[ssinωtωcosωt])0π2ω=\dfrac{1}{1-e^{-\frac{2\pi i}{\omega}}} (\dfrac{e^{-st}}{s^2+\omega^2}[-s sin\omega t -\omega cos\omega t])_0^{\frac{\pi}{2\omega}}

 

        =11eπiω(esπ2ωω+ωs2+ω2)=\dfrac{1}{1-e^{-\frac{\pi i}{\omega}}} (\dfrac{e^{-\frac{s\pi}{2\omega}} \omega+\omega}{s^2+\omega^2})


       =2ω(1eπiω)(s2+ω2)=\dfrac{2\omega}{(1-e^{-\frac{\pi i}{\omega}} )(s^2+\omega^2)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment