Find the Laplace Transform of half-wave and full-wave
rectified sine wave given in the following figures.
Take w = 2
"f(t)=sin\\omega t" ,
For full wave-
"L[sin\\omega t]=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} \\int_0^{2\\pi} e^{-st} sin\\omega t dt"
"=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} (\\dfrac{e^{-st}}{s^2+\\omega^2}[-s sin\\omega t -\\omega cos\\omega t])_0^{\\frac{\\pi}{\\omega}}"
"=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} (\\dfrac{e^{-\\frac{s\\pi}{\\omega}} \\omega+\\omega}{s^2+\\omega^2})"
"=\\dfrac{\\omega}{(1-e^{-\\frac{\\pi i}{\\omega}} )(s^2+\\omega^2)}"
For half wave-
"L[sin\\omega t]=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} \\int_0^{\\pi} e^{-st} sin\\omega t dt"
"=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} (\\dfrac{e^{-st}}{s^2+\\omega^2}[-s sin\\omega t -\\omega cos\\omega t])_0^{\\frac{\\pi}{2\\omega}}"
"=\\dfrac{1}{1-e^{-\\frac{\\pi i}{\\omega}}} (\\dfrac{e^{-\\frac{s\\pi}{2\\omega}} \\omega+\\omega}{s^2+\\omega^2})"
"=\\dfrac{2\\omega}{(1-e^{-\\frac{\\pi i}{\\omega}} )(s^2+\\omega^2)}"
Comments
Leave a comment