Answer to Question #197448 in Differential Equations for M Kamran

Question #197448

Find the Laplace Transform of half-wave and full-wave

rectified sine wave given in the following figures.

Take w = 2


1
Expert's answer
2021-05-24T16:08:42-0400

"f(t)=sin\\omega t" ,


For full wave-


"L[sin\\omega t]=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} \\int_0^{2\\pi} e^{-st} sin\\omega t dt"


        "=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} (\\dfrac{e^{-st}}{s^2+\\omega^2}[-s sin\\omega t -\\omega cos\\omega t])_0^{\\frac{\\pi}{\\omega}}"

 

        "=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} (\\dfrac{e^{-\\frac{s\\pi}{\\omega}} \\omega+\\omega}{s^2+\\omega^2})"


       "=\\dfrac{\\omega}{(1-e^{-\\frac{\\pi i}{\\omega}} )(s^2+\\omega^2)}"


For half wave-


"L[sin\\omega t]=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} \\int_0^{\\pi} e^{-st} sin\\omega t dt"


        "=\\dfrac{1}{1-e^{-\\frac{2\\pi i}{\\omega}}} (\\dfrac{e^{-st}}{s^2+\\omega^2}[-s sin\\omega t -\\omega cos\\omega t])_0^{\\frac{\\pi}{2\\omega}}"

 

        "=\\dfrac{1}{1-e^{-\\frac{\\pi i}{\\omega}}} (\\dfrac{e^{-\\frac{s\\pi}{2\\omega}} \\omega+\\omega}{s^2+\\omega^2})"


       "=\\dfrac{2\\omega}{(1-e^{-\\frac{\\pi i}{\\omega}} )(s^2+\\omega^2)}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS