Question #197375

(D^2-2D+3)y=X^2-1


1
Expert's answer
2021-05-24T15:20:46-0400

Let us solve the differential equation (D2βˆ’2D+3)y=x2βˆ’1(D^2-2D+3)y=x^2-1. For this let us solve the characteristic equation of the homogeneous equation (D2βˆ’2D+3)y=0(D^2-2D+3)y=0:


k2βˆ’2k+3=0k^2-2k+3=0


(kβˆ’1)2+2=0(k-1)^2+2=0


(kβˆ’1)2=βˆ’2(k-1)^2=-2


k1=1+i2k_1=1+i\sqrt{2} and k2=1βˆ’i2.k_2=1-i\sqrt{2}.


It follows that the general solution of the equation (D2βˆ’2D+3)y=x2βˆ’1(D^2-2D+3)y=x^2-1 is of the form y=ex(C1cos⁑(2x)+C2sin⁑(2x))+yp,y=e^x(C_1\cos(\sqrt{2}x)+ C_2\sin(\sqrt{2}x))+y_p, where yp=Ax2+Bx+C.y_p=Ax^2+Bx+C. It follows that ypβ€²=2Ax+By_p'=2Ax+B and ypβ€²β€²=2A.y_p''=2A. Therefore, 2Aβˆ’2(2Ax+B)+3(Ax2+Bx+C)=x2βˆ’1.2A-2(2Ax+B)+3(Ax^2+Bx+C)=x^2-1. We conclude that 3Ax2+(3Bβˆ’4A)x+(2Aβˆ’2B+3C)=x2βˆ’1.3Ax^2+(3B-4A)x+(2A-2B+3C)=x^2-1. Consequently, 3A=1, 3Bβˆ’4A=0, 2Aβˆ’2B+3C=βˆ’1.3A=1,\ 3B-4A=0,\ 2A-2B+3C=-1. It follows that A=13, B=49, C=13(βˆ’1βˆ’23+89)=βˆ’727.A=\frac{1}{3},\ B=\frac{4}{9},\ C=\frac{1}{3}(-1-\frac{2}{3}+\frac{8}{9})=-\frac{7}{27}.


We conclude that the general solution of the differential equation (D2βˆ’2D+3)y=x2βˆ’1(D^2-2D+3)y=x^2-1 is


y=ex(C1cos⁑(2x)+C2sin⁑(2x))+13x2+49xβˆ’727.y=e^x(C_1\cos(\sqrt{2}x)+ C_2\sin(\sqrt{2}x))+\frac{1}{3}x^2+\frac{4}{9}x-\frac{7}{27}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS