Question #197110

find the differential equation:

2x + 6 y y' =(x^2+3y^2/y)y'


1
Expert's answer
2021-05-24T16:24:56-0400

Solution.


2x+6yy=(x2+3y2)/yy2x+6yy'=(x^2+3y^2)/y•y'

Let be y=xv(x),y=x•v(x), then

y=xv(x)+v.y'=xv'(x)+v.

We will have


2x+6x(xv+v)v=(x2+3x2v2)(xv+v)xv2x+6x(xv'+v)•v=\frac{(x^2+3x^2v^2)(xv'+v)}{xv}

2x+6x(xv+v)v=x(1+3v2)(xv+v)v2x+6x(xv'+v)•v=\frac{x(1+3v^2)(xv'+v)}{v}

2xv+6x2v2v+6xv3=3x2v2v+x2v+3xv3+xv2xv+6x^2v^2v'+6xv^3=3x^2v^2v'+x^2v'+3xv^3+xv

xv+3x2v2v+3xv3=x2vxv+3x^2v^2v'+3xv^3=x^2v'

x(3v21)v=3v3vx(3v^2-1)v'=-3v^3-v

3v213v3vv=1x\frac{3v^2-1}{-3v^3-v}v'=\frac{1}{x}


3v213v3vdv=1xdx\int\frac{3v^2-1}{-3v^3-v}dv=\int\frac{1}{x}dx

(6v3v2+11v)dv=1xdx-\int(\frac{6v}{3v^2+1}-\frac{1}{v})dv=\int\frac{1}{x}dx

ln(3v2+1)+lnv=lnx+C,-\ln (3v^2+1)+\ln v=\ln x+C,

where C is some constant.


v=x(3v2+1)eCv=x(3v^2+1)e^C

y=(3y2+x2)eCy=(3y^2+x^2)e^C

3eCy2+yx2eC=0-3e^Cy^2+y-x^2e^C=0

y=16(eC±e2C12x2).y=\frac{1}{6}(e^C\pm\sqrt{e^{2C}-12x^2}).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS