find the differential equation:
2x + 6 y y' =(x^2+3y^2/y)y'
Solution.
Let be "y=x\u2022v(x)," then
"y'=xv'(x)+v."
We will have
"2x+6x(xv'+v)\u2022v=\\frac{x(1+3v^2)(xv'+v)}{v}"
"2xv+6x^2v^2v'+6xv^3=3x^2v^2v'+x^2v'+3xv^3+xv"
"xv+3x^2v^2v'+3xv^3=x^2v'"
"x(3v^2-1)v'=-3v^3-v"
"\\frac{3v^2-1}{-3v^3-v}v'=\\frac{1}{x}"
"-\\int(\\frac{6v}{3v^2+1}-\\frac{1}{v})dv=\\int\\frac{1}{x}dx"
"-\\ln (3v^2+1)+\\ln v=\\ln x+C,"
where C is some constant.
"y=(3y^2+x^2)e^C"
"-3e^Cy^2+y-x^2e^C=0"
"y=\\frac{1}{6}(e^C\\pm\\sqrt{e^{2C}-12x^2})."
Comments
Leave a comment