Solution.
2 x + 6 y y ′ = ( x 2 + 3 y 2 ) / y • y ′ 2x+6yy'=(x^2+3y^2)/y•y' 2 x + 6 y y ′ = ( x 2 + 3 y 2 ) / y • y ′ Let be y = x • v ( x ) , y=x•v(x), y = x • v ( x ) , then
y ′ = x v ′ ( x ) + v . y'=xv'(x)+v. y ′ = x v ′ ( x ) + v .
We will have
2 x + 6 x ( x v ′ + v ) • v = ( x 2 + 3 x 2 v 2 ) ( x v ′ + v ) x v 2x+6x(xv'+v)•v=\frac{(x^2+3x^2v^2)(xv'+v)}{xv} 2 x + 6 x ( x v ′ + v ) • v = xv ( x 2 + 3 x 2 v 2 ) ( x v ′ + v )
2 x + 6 x ( x v ′ + v ) • v = x ( 1 + 3 v 2 ) ( x v ′ + v ) v 2x+6x(xv'+v)•v=\frac{x(1+3v^2)(xv'+v)}{v} 2 x + 6 x ( x v ′ + v ) • v = v x ( 1 + 3 v 2 ) ( x v ′ + v )
2 x v + 6 x 2 v 2 v ′ + 6 x v 3 = 3 x 2 v 2 v ′ + x 2 v ′ + 3 x v 3 + x v 2xv+6x^2v^2v'+6xv^3=3x^2v^2v'+x^2v'+3xv^3+xv 2 xv + 6 x 2 v 2 v ′ + 6 x v 3 = 3 x 2 v 2 v ′ + x 2 v ′ + 3 x v 3 + xv
x v + 3 x 2 v 2 v ′ + 3 x v 3 = x 2 v ′ xv+3x^2v^2v'+3xv^3=x^2v' xv + 3 x 2 v 2 v ′ + 3 x v 3 = x 2 v ′
x ( 3 v 2 − 1 ) v ′ = − 3 v 3 − v x(3v^2-1)v'=-3v^3-v x ( 3 v 2 − 1 ) v ′ = − 3 v 3 − v
3 v 2 − 1 − 3 v 3 − v v ′ = 1 x \frac{3v^2-1}{-3v^3-v}v'=\frac{1}{x} − 3 v 3 − v 3 v 2 − 1 v ′ = x 1
∫ 3 v 2 − 1 − 3 v 3 − v d v = ∫ 1 x d x \int\frac{3v^2-1}{-3v^3-v}dv=\int\frac{1}{x}dx ∫ − 3 v 3 − v 3 v 2 − 1 d v = ∫ x 1 d x
− ∫ ( 6 v 3 v 2 + 1 − 1 v ) d v = ∫ 1 x d x -\int(\frac{6v}{3v^2+1}-\frac{1}{v})dv=\int\frac{1}{x}dx − ∫ ( 3 v 2 + 1 6 v − v 1 ) d v = ∫ x 1 d x
− ln ( 3 v 2 + 1 ) + ln v = ln x + C , -\ln (3v^2+1)+\ln v=\ln x+C, − ln ( 3 v 2 + 1 ) + ln v = ln x + C , where C is some constant.
v = x ( 3 v 2 + 1 ) e C v=x(3v^2+1)e^C v = x ( 3 v 2 + 1 ) e C
y = ( 3 y 2 + x 2 ) e C y=(3y^2+x^2)e^C y = ( 3 y 2 + x 2 ) e C
− 3 e C y 2 + y − x 2 e C = 0 -3e^Cy^2+y-x^2e^C=0 − 3 e C y 2 + y − x 2 e C = 0
y = 1 6 ( e C ± e 2 C − 12 x 2 ) . y=\frac{1}{6}(e^C\pm\sqrt{e^{2C}-12x^2}). y = 6 1 ( e C ± e 2 C − 12 x 2 ) .
Comments