Solution.
2x+6yy′=(x2+3y2)/y•y′ Let be y=x•v(x), then
y′=xv′(x)+v.
We will have
2x+6x(xv′+v)•v=xv(x2+3x2v2)(xv′+v)
2x+6x(xv′+v)•v=vx(1+3v2)(xv′+v)
2xv+6x2v2v′+6xv3=3x2v2v′+x2v′+3xv3+xv
xv+3x2v2v′+3xv3=x2v′
x(3v2−1)v′=−3v3−v
−3v3−v3v2−1v′=x1
∫−3v3−v3v2−1dv=∫x1dx
−∫(3v2+16v−v1)dv=∫x1dx
−ln(3v2+1)+lnv=lnx+C, where C is some constant.
v=x(3v2+1)eC
y=(3y2+x2)eC
−3eCy2+y−x2eC=0
y=61(eC±e2C−12x2).
Comments