Answer to Question #197056 in Differential Equations for Rabia

Question #197056

Determine the Integrating factor and identify the solution of general/initial value problem

a) (π‘₯2 +1)𝑦′ +2π‘₯𝑦=4π‘₯2 ; 𝑦(0)=0

1+π‘₯2


b)𝑦′+ 𝑦 =3π‘₯2 π‘₯𝑙𝑛π‘₯ ln π‘₯

c) (π‘₯2 + 1) 𝑦′ + 4π‘₯𝑦 = π‘₯ ; 𝑦(2) = 1


1
Expert's answer
2021-05-25T13:14:02-0400

(a) Given equation-

"(x^2+1)y'+2xy=4x^2; y(0)=0"


The simplifying expression is-


"\\dfrac{dy}{dx}+\\dfrac{2xy}{x^2+1}=\\dfrac{4x^2}{x^2+1}"



Integrating factor-


"I.F.=e^{\\int Pdx}"

Β Β "=e^{\\frac{2x}{1+x^2}}dx\n\n\n\n \\\\=e^{ln(1+x^2)}\n\\\\\n =1+x^2"

Solution is-


"y\\times (1+x^2)=\\int (1+x^2)(\\dfrac{4x^2}{1+x^2})dx\n\n\\\\[9pt]\n\n\\Rightarrow y(1+x^2)=\\dfrac{4x^3}{3}+C"


Putting Y(0)=0


"0=0+C\\Rightarrow C=0"


So Solution is-


"(1+x^2)y=\\dfrac{4x^3}{3}"


(b)Given equation-

Β Β "y'+y=3x^2\n\\\\[9pt]\n\n\n \\dfrac{dy}{dx}+y=3x^2"


Integrating factor-


I".F.=e^{1.dx}=e^x"


Solution is-


"y\\times e^x=\\int e^x 3x^2dx\n\n\n\\\\[9pt]\nye^x=3x^2e^x-6xe^x+6e^x+C\n\\\\[9pt]\n\n\ny=3x^2-6x+6+ce^{-x}"


(C) Given equation is-


"(x^2+1)y'+4xy=x;y(2)=1"


The simplified expression is-


"\\dfrac{dy}{dx}+\\dfrac{4xy}{x^2+1}=\\dfrac{x}{x^2+1}"



Integrating factor-


"I.F.=e^{\\frac{4x}{1+x^2}dx}=e^{2log(1+x^2)}=e^{log(1+x^2)^2}=(1+x^2)^2"


Solution is-


"y\\times x^2=\\int (1+x^2)^2 \\dfrac{x}{x^2+1}dx\n\\\\[9pt]\n\n\\Rightarrow yx^2=\\int(x+x^3)dx\\\\[9pt]\n\n\n\n\\Rightarrow yx^2=\\dfrac{x^2}{2}+\\dfrac{x^4}{4}+c\n\n\n\\\\[9pt]\n\\Rightarrow y=\\dfrac{1}{2}+\\dfrac{x^2}{4}+\\dfrac{c}{x^2}"


Also, y(2)=1


"\\Rightarrow 1=\\dfrac{1}{2}+\\dfrac{4}{4}+\\dfrac{c}{4}\\\\[9pt]\n\n\n\n\\dfrac{c}{4}=-\\dfrac{1}{2}\\\\[9pt]c=-2"


So solution is-

"y=\\dfrac{1}{2}+\\dfrac{x^2}{4}-\\dfrac{2}{x^2}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS