Determine the Integrating factor and identify the solution of general/initial value problem
a) (π₯2 +1)π¦β² +2π₯π¦=4π₯2 ; π¦(0)=0
1+π₯2
b)π¦β²+ π¦ =3π₯2 π₯πππ₯ ln π₯
c) (π₯2 + 1) π¦β² + 4π₯π¦ = π₯ ; π¦(2) = 1
(a) Given equation-
"(x^2+1)y'+2xy=4x^2; y(0)=0"
The simplifying expression is-
"\\dfrac{dy}{dx}+\\dfrac{2xy}{x^2+1}=\\dfrac{4x^2}{x^2+1}"
Integrating factor-
"I.F.=e^{\\int Pdx}"
Β Β "=e^{\\frac{2x}{1+x^2}}dx\n\n\n\n \\\\=e^{ln(1+x^2)}\n\\\\\n =1+x^2"
Solution is-
"y\\times (1+x^2)=\\int (1+x^2)(\\dfrac{4x^2}{1+x^2})dx\n\n\\\\[9pt]\n\n\\Rightarrow y(1+x^2)=\\dfrac{4x^3}{3}+C"
Putting Y(0)=0
"0=0+C\\Rightarrow C=0"
So Solution is-
"(1+x^2)y=\\dfrac{4x^3}{3}"
(b)Given equation-
Β Β "y'+y=3x^2\n\\\\[9pt]\n\n\n \\dfrac{dy}{dx}+y=3x^2"
Integrating factor-
I".F.=e^{1.dx}=e^x"
Solution is-
"y\\times e^x=\\int e^x 3x^2dx\n\n\n\\\\[9pt]\nye^x=3x^2e^x-6xe^x+6e^x+C\n\\\\[9pt]\n\n\ny=3x^2-6x+6+ce^{-x}"
(C) Given equation is-
"(x^2+1)y'+4xy=x;y(2)=1"
The simplified expression is-
"\\dfrac{dy}{dx}+\\dfrac{4xy}{x^2+1}=\\dfrac{x}{x^2+1}"
Integrating factor-
"I.F.=e^{\\frac{4x}{1+x^2}dx}=e^{2log(1+x^2)}=e^{log(1+x^2)^2}=(1+x^2)^2"
Solution is-
"y\\times x^2=\\int (1+x^2)^2 \\dfrac{x}{x^2+1}dx\n\\\\[9pt]\n\n\\Rightarrow yx^2=\\int(x+x^3)dx\\\\[9pt]\n\n\n\n\\Rightarrow yx^2=\\dfrac{x^2}{2}+\\dfrac{x^4}{4}+c\n\n\n\\\\[9pt]\n\\Rightarrow y=\\dfrac{1}{2}+\\dfrac{x^2}{4}+\\dfrac{c}{x^2}"
Also, y(2)=1
"\\Rightarrow 1=\\dfrac{1}{2}+\\dfrac{4}{4}+\\dfrac{c}{4}\\\\[9pt]\n\n\n\n\\dfrac{c}{4}=-\\dfrac{1}{2}\\\\[9pt]c=-2"
So solution is-
"y=\\dfrac{1}{2}+\\dfrac{x^2}{4}-\\dfrac{2}{x^2}"
Comments
Leave a comment