(a) Given equation-
(x2+1)y′+2xy=4x2;y(0)=0
The simplifying expression is-
dxdy+x2+12xy=x2+14x2
Integrating factor-
I.F.=e∫Pdx
=e1+x22xdx=eln(1+x2)=1+x2
Solution is-
y×(1+x2)=∫(1+x2)(1+x24x2)dx⇒y(1+x2)=34x3+C
Putting Y(0)=0
0=0+C⇒C=0
So Solution is-
(1+x2)y=34x3
(b)Given equation-
y′+y=3x2dxdy+y=3x2
Integrating factor-
I.F.=e1.dx=ex
Solution is-
y×ex=∫ex3x2dxyex=3x2ex−6xex+6ex+Cy=3x2−6x+6+ce−x
(C) Given equation is-
(x2+1)y′+4xy=x;y(2)=1
The simplified expression is-
dxdy+x2+14xy=x2+1x
Integrating factor-
I.F.=e1+x24xdx=e2log(1+x2)=elog(1+x2)2=(1+x2)2
Solution is-
y×x2=∫(1+x2)2x2+1xdx⇒yx2=∫(x+x3)dx⇒yx2=2x2+4x4+c⇒y=21+4x2+x2c
Also, y(2)=1
⇒1=21+44+4c4c=−21c=−2
So solution is-
y=21+4x2−x22
Comments
Leave a comment