Answer to Question #197056 in Differential Equations for Rabia

Question #197056

Determine the Integrating factor and identify the solution of general/initial value problem

a) (𝑥2 +1)𝑦′ +2𝑥𝑦=4𝑥2 ; 𝑦(0)=0

1+𝑥2


b)𝑦′+ 𝑦 =3𝑥2 𝑥𝑙𝑛𝑥 ln 𝑥

c) (𝑥2 + 1) 𝑦′ + 4𝑥𝑦 = 𝑥 ; 𝑦(2) = 1


1
Expert's answer
2021-05-25T13:14:02-0400

(a) Given equation-

(x2+1)y+2xy=4x2;y(0)=0(x^2+1)y'+2xy=4x^2; y(0)=0


The simplifying expression is-


dydx+2xyx2+1=4x2x2+1\dfrac{dy}{dx}+\dfrac{2xy}{x^2+1}=\dfrac{4x^2}{x^2+1}



Integrating factor-


I.F.=ePdxI.F.=e^{\int Pdx}

  =e2x1+x2dx=eln(1+x2)=1+x2=e^{\frac{2x}{1+x^2}}dx \\=e^{ln(1+x^2)} \\ =1+x^2

Solution is-


y×(1+x2)=(1+x2)(4x21+x2)dxy(1+x2)=4x33+Cy\times (1+x^2)=\int (1+x^2)(\dfrac{4x^2}{1+x^2})dx \\[9pt] \Rightarrow y(1+x^2)=\dfrac{4x^3}{3}+C


Putting Y(0)=0


0=0+CC=00=0+C\Rightarrow C=0


So Solution is-


(1+x2)y=4x33(1+x^2)y=\dfrac{4x^3}{3}


(b)Given equation-

  y+y=3x2dydx+y=3x2y'+y=3x^2 \\[9pt] \dfrac{dy}{dx}+y=3x^2


Integrating factor-


I.F.=e1.dx=ex.F.=e^{1.dx}=e^x


Solution is-


y×ex=ex3x2dxyex=3x2ex6xex+6ex+Cy=3x26x+6+cexy\times e^x=\int e^x 3x^2dx \\[9pt] ye^x=3x^2e^x-6xe^x+6e^x+C \\[9pt] y=3x^2-6x+6+ce^{-x}


(C) Given equation is-


(x2+1)y+4xy=x;y(2)=1(x^2+1)y'+4xy=x;y(2)=1


The simplified expression is-


dydx+4xyx2+1=xx2+1\dfrac{dy}{dx}+\dfrac{4xy}{x^2+1}=\dfrac{x}{x^2+1}



Integrating factor-


I.F.=e4x1+x2dx=e2log(1+x2)=elog(1+x2)2=(1+x2)2I.F.=e^{\frac{4x}{1+x^2}dx}=e^{2log(1+x^2)}=e^{log(1+x^2)^2}=(1+x^2)^2


Solution is-


y×x2=(1+x2)2xx2+1dxyx2=(x+x3)dxyx2=x22+x44+cy=12+x24+cx2y\times x^2=\int (1+x^2)^2 \dfrac{x}{x^2+1}dx \\[9pt] \Rightarrow yx^2=\int(x+x^3)dx\\[9pt] \Rightarrow yx^2=\dfrac{x^2}{2}+\dfrac{x^4}{4}+c \\[9pt] \Rightarrow y=\dfrac{1}{2}+\dfrac{x^2}{4}+\dfrac{c}{x^2}


Also, y(2)=1


1=12+44+c4c4=12c=2\Rightarrow 1=\dfrac{1}{2}+\dfrac{4}{4}+\dfrac{c}{4}\\[9pt] \dfrac{c}{4}=-\dfrac{1}{2}\\[9pt]c=-2


So solution is-

y=12+x242x2y=\dfrac{1}{2}+\dfrac{x^2}{4}-\dfrac{2}{x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment