Question #196171

Given dy/dx=y²/25 and y = 5 when x = 0 Find x when y =2


1
Expert's answer
2021-05-24T18:40:24-0400

Let us solve the differential equation dydx=y225\frac{dy}{dx}=\frac{y^2}{25}:


dyy2=dx25\frac{dy}{y^2}=\frac{dx}{25}


dyy2=dx25\int\frac{dy}{y^2}=\int\frac{dx}{25}


1y=x25+C-\frac{1}{y}=\frac{x}{25}+C


Since y=5y = 5 when x=0x = 0, we have that C=15.C=-\frac{1}{5}.


It follows that 1y=x2515.-\frac{1}{y}=\frac{x}{25}-\frac{1}{5}.


Let us find xx when y=2:y =2:


12=x2515-\frac{1}{2}=\frac{x}{25}-\frac{1}{5}


x25=1512=310\frac{x}{25}=\frac{1}{5}-\frac{1}{2}=-\frac{3}{10}


We conclude that x=152.x=-\frac{15}{2}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS