Given dy/dx=y²/25 and y = 5 when x = 0 Find x when y =2
Let us solve the differential equation dydx=y225\frac{dy}{dx}=\frac{y^2}{25}dxdy=25y2:
dyy2=dx25\frac{dy}{y^2}=\frac{dx}{25}y2dy=25dx
∫dyy2=∫dx25\int\frac{dy}{y^2}=\int\frac{dx}{25}∫y2dy=∫25dx
−1y=x25+C-\frac{1}{y}=\frac{x}{25}+C−y1=25x+C
Since y=5y = 5y=5 when x=0x = 0x=0, we have that C=−15.C=-\frac{1}{5}.C=−51.
It follows that −1y=x25−15.-\frac{1}{y}=\frac{x}{25}-\frac{1}{5}.−y1=25x−51.
Let us find xxx when y=2:y =2:y=2:
−12=x25−15-\frac{1}{2}=\frac{x}{25}-\frac{1}{5}−21=25x−51
x25=15−12=−310\frac{x}{25}=\frac{1}{5}-\frac{1}{2}=-\frac{3}{10}25x=51−21=−103
We conclude that x=−152.x=-\frac{15}{2}.x=−215.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments