Let the solution of above differential equation be
y=a0xm+a1xm+1+a2xm+2+...+anxm+n
dxdy=ma0xm−1+(m+1)a1xm
+(m+2)a2xm+1+...+(m+n)anxm+n−1
dx2d2y=m(m−1)a0xm−2+(m+1)ma1xm−1
+(m+2)(m+1)a2xm+...
+(m+n)(m+n−1)anxm+n−2
x2dx2d2y+4xdxdy+(x2+2)y=0
x2[m(m−1)a0xm−2+(m+1)ma1xm−1
+(m+2)(m+1)a2xm+...
+(m+n)(m+n−1)anxm+n−2]
+4x[ma0xm−1+(m+1)a1xm
+(m+2)a2xm+1+...+(m+n)anxm+n−1]
+(x2+2)[a0xm+a1xm+1+a2xm+2+...
+anxm+n]=0
(m2+3m+2)a0xm+
+n=1∑∞((n+m)(n+m−1)+4(m+n)+2)anxm+n
+n=1∑∞(n+m+1)an−1xm+n=0
Equating the coefficient of lowest degree in x (which is xm ) equal to zero
m2+3m+2=0
m=−2,−1m=−2
n=1∑∞((n−2)(n−3)+4(n−2)+2)an
+n=1∑∞(n−1)an−1xn−2=0,n≥1
an=−nan−1,n≥1
a1=−a0
a2=−2a1=2a0
a3=−3a2=−6a0
y1(x)=a0x−2(1−x+2x2−6x3+...)
m=−1
n=1∑∞((n−1)(n−2)+4(n−1)+2)an
+n=1∑∞nan−1=0,n≥1
an=−n+1an−1,n≥1
a1=−2a0
a2=−3a1=6a0
a3=−4a2=−24a0
y2(x)=a0x−1(1−2x+6x2−24x3+...)
y=C3y1(x)+C4y2(x)
=C1x−2(1−x+2x2−6x3+...)
+C2x−1(1−2x+6x2−24x3+...)
Comments