Using the Frobenius method, solve the following ODE:
x²y"+4xy'+(x²+2)y=0
Let the solution of above differential equation be
"+(m+2)a_2x^{m+1}+...+(m+n)a_nx^{m+n-1}"
"+(m+2)(m+1)a_2x^{m}+..."
"+(m+n)(m+n-1)a_nx^{m+n-2}"
"x^2\\big[m(m-1)a_0x^{m-2}+(m+1)ma_1x^{m-1}"
"+(m+2)(m+1)a_2x^{m}+..."
"+(m+n)(m+n-1)a_nx^{m+n-2}\\big]"
"+4x\\big[ma_0x^{m-1}+(m+1)a_1x^m"
"+(m+2)a_2x^{m+1}+...+(m+n)a_nx^{m+n-1}\\big]"
"+(x^2+2)\\big[a_0x^m+a_1x^{m+1}+a_2x^{m+2}+..."
"+a_nx^{m+n}\\big]=0"
"(m^2+3m+2)a_0x^m+"
"+\\displaystyle\\sum_{n=1}^{\\infin}((n+m)(n+m-1)+4(m+n)+2)a_nx^{m+n}"
"+\\displaystyle\\sum_{n=1}^{\\infin}(n+m+1)a_{n-1}x^{m+n}=0"
Equating the coefficient of lowest degree in "x" (which is "x^m" ) equal to zero
"m=-2"
"+\\displaystyle\\sum_{n=1}^{\\infin}(n-1)a_{n-1}x^{n-2}=0, n\\geq1"
"a_n=-\\dfrac{a_{n-1}}{n}, n\\geq1"
"a_1=-a_0"
"a_2=-\\dfrac{a_{1}}{2}=\\dfrac{a_{0}}{2}"
"a_3=-\\dfrac{a_{2}}{3}=-\\dfrac{a_{0}}{6}"
"y_1(x)=a_0x^{-2}(1-x+\\dfrac{x^2}{2}-\\dfrac{x^3}{6}+...)"
"m=-1"
"+\\displaystyle\\sum_{n=1}^{\\infin}na_{n-1}=0, n\\geq1"
"a_n=-\\dfrac{a_{n-1}}{n+1}, n\\geq1"
"a_1=-\\dfrac{a_{0}}{2}"
"a_2=-\\dfrac{a_{1}}{3}=\\dfrac{a_{0}}{6}"
"a_3=-\\dfrac{a_{2}}{4}=-\\dfrac{a_{0}}{24}"
"y_2(x)=a_0x^{-1}(1-\\dfrac{x}{2}+\\dfrac{x^2}{6}-\\dfrac{x^3}{24}+...)"
"+C_2x^{-1}(1-\\dfrac{x}{2}+\\dfrac{x^2}{6}-\\dfrac{x^3}{24}+...)"
Comments
Leave a comment