Question #196505

Using the Frobenius method, solve the following ODE:

x²y"+4xy'+(x²+2)y=0


1
Expert's answer
2021-05-24T17:30:51-0400

Let the solution of above differential equation be


y=a0xm+a1xm+1+a2xm+2+...+anxm+ny=a_0x^m+a_1x^{m+1}+a_2x^{m+2}+...+a_nx^{m+n}




dydx=ma0xm1+(m+1)a1xm\dfrac{dy}{dx}=ma_0x^{m-1}+(m+1)a_1x^m


+(m+2)a2xm+1+...+(m+n)anxm+n1+(m+2)a_2x^{m+1}+...+(m+n)a_nx^{m+n-1}


d2ydx2=m(m1)a0xm2+(m+1)ma1xm1\dfrac{d^2y}{dx^2}=m(m-1)a_0x^{m-2}+(m+1)ma_1x^{m-1}


+(m+2)(m+1)a2xm+...+(m+2)(m+1)a_2x^{m}+...

+(m+n)(m+n1)anxm+n2+(m+n)(m+n-1)a_nx^{m+n-2}


x2d2ydx2+4xdydx+(x2+2)y=0x^2\dfrac{d^2y}{dx^2}+4x\dfrac{dy}{dx}+(x^2+2)y=0


x2[m(m1)a0xm2+(m+1)ma1xm1x^2\big[m(m-1)a_0x^{m-2}+(m+1)ma_1x^{m-1}

+(m+2)(m+1)a2xm+...+(m+2)(m+1)a_2x^{m}+...

+(m+n)(m+n1)anxm+n2]+(m+n)(m+n-1)a_nx^{m+n-2}\big]

+4x[ma0xm1+(m+1)a1xm+4x\big[ma_0x^{m-1}+(m+1)a_1x^m

+(m+2)a2xm+1+...+(m+n)anxm+n1]+(m+2)a_2x^{m+1}+...+(m+n)a_nx^{m+n-1}\big]

+(x2+2)[a0xm+a1xm+1+a2xm+2+...+(x^2+2)\big[a_0x^m+a_1x^{m+1}+a_2x^{m+2}+...

+anxm+n]=0+a_nx^{m+n}\big]=0

(m2+3m+2)a0xm+(m^2+3m+2)a_0x^m+

+n=1((n+m)(n+m1)+4(m+n)+2)anxm+n+\displaystyle\sum_{n=1}^{\infin}((n+m)(n+m-1)+4(m+n)+2)a_nx^{m+n}

+n=1(n+m+1)an1xm+n=0+\displaystyle\sum_{n=1}^{\infin}(n+m+1)a_{n-1}x^{m+n}=0



Equating the coefficient of lowest degree in xx (which is xmx^m ) equal to zero



m2+3m+2=0m^2+3m+2=0


m=2,1m=-2,-1

m=2m=-2



n=1((n2)(n3)+4(n2)+2)an\displaystyle\sum_{n=1}^{\infin}((n-2)(n-3)+4(n-2)+2)a_n

+n=1(n1)an1xn2=0,n1+\displaystyle\sum_{n=1}^{\infin}(n-1)a_{n-1}x^{n-2}=0, n\geq1

an=an1n,n1a_n=-\dfrac{a_{n-1}}{n}, n\geq1

a1=a0a_1=-a_0

a2=a12=a02a_2=-\dfrac{a_{1}}{2}=\dfrac{a_{0}}{2}

a3=a23=a06a_3=-\dfrac{a_{2}}{3}=-\dfrac{a_{0}}{6}

y1(x)=a0x2(1x+x22x36+...)y_1(x)=a_0x^{-2}(1-x+\dfrac{x^2}{2}-\dfrac{x^3}{6}+...)


m=1m=-1



n=1((n1)(n2)+4(n1)+2)an\displaystyle\sum_{n=1}^{\infin}((n-1)(n-2)+4(n-1)+2)a_n

+n=1nan1=0,n1+\displaystyle\sum_{n=1}^{\infin}na_{n-1}=0, n\geq1

an=an1n+1,n1a_n=-\dfrac{a_{n-1}}{n+1}, n\geq1

a1=a02a_1=-\dfrac{a_{0}}{2}

a2=a13=a06a_2=-\dfrac{a_{1}}{3}=\dfrac{a_{0}}{6}

a3=a24=a024a_3=-\dfrac{a_{2}}{4}=-\dfrac{a_{0}}{24}

y2(x)=a0x1(1x2+x26x324+...)y_2(x)=a_0x^{-1}(1-\dfrac{x}{2}+\dfrac{x^2}{6}-\dfrac{x^3}{24}+...)




y=C3y1(x)+C4y2(x)y=C_3y_1(x)+C_4y_2(x)


=C1x2(1x+x22x36+...)=C_1x^{-2}(1-x+\dfrac{x^2}{2}-\dfrac{x^3}{6}+...)

+C2x1(1x2+x26x324+...)+C_2x^{-1}(1-\dfrac{x}{2}+\dfrac{x^2}{6}-\dfrac{x^3}{24}+...)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS