Solve:(π·2 β2π·π·β² +π·β²2)π=π₯2π¦2ππ₯+π¦
"(D^2-2DD'+D'^2)z=x^2y^2e^x+y"
Auxiliary equation is given by
"m^2-2m+1=0"
"m=1,1"
Complimentary function is given by :
"u=\\phi_1(y+1.x)+x\\phi_2(y+1.x)"
"u=\\phi_1(y+x)+x\\phi_2(y+x)"
"D=\\dfrac{d}{dx}\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space D'=\\dfrac{d}{dy}"
Particular integral, PI :
"=\\dfrac{1}{(D^2-2DD'+D'^2)}x^2y^2e^x+\\dfrac{1}{(D^2-2DD'+D'^2)}y"
"P.I_1=\\dfrac{1}{(D^2-2DD'+D'^2)}e^xx^2y^2"
Operating the denominator on "e^x"
"=\\dfrac{e^x}{((D+1)^2-2(D+1)D'+D'^2)}e^xx^2y^2"
"=e^x\\dfrac{1}{[1+(D^2-2D-2D'-2DD'+D'^2)]}x^2y^2"
"=e^x[1+(D^2-2D-2D'-2DD'+D'^2)]^{-1}x^2y^2"
Using binomial expansion of "(1+x)^{-1}", expanding the given equation
"=e^x[1+(D^2-2D-2D'-2DD'+D'^2)]x^2y^2"
Operating "D" and "D'" on "x^2y^2"
"=e^x[x^2y^2+2y^2+4xy^2-4x^2y-8xy+2x^2]"
"P.I_2=\\dfrac{1}{(D^2-2DD'+D'^2)}y"
"=\\dfrac{1}{(D-D')^2}y"
Taking "D^2" common from the denominator
"=\\dfrac{1}{D^2\\bigg(1-\\dfrac{D'}{D}\\bigg)^2}y"
"=\\dfrac{1}{D^2}\\bigg(1+\\dfrac{D'}{D}\\bigg)^{-2}y"
Using binomial expansion of "(1+x)^{-2}" and neglecting higher powers as they go to zero
"=\\dfrac{1}{D^2}\\bigg(1+\\dfrac{2D'}{D}\\bigg)y"
Operating "\\bigg(1+\\dfrac{2D'}{D}\\bigg)" on y
"=\\dfrac{1}{D^2}y+\\dfrac{2}{D^3}"
"=\\int\\int ydx+2\\int\\int\\int dx"
"=\\dfrac{yx^2}{2}+\\dfrac{x^3}{6}"
Complete solution, "CS=u+PI_1+PI_2"
"z=\\phi_1(y+x)+x\\phi_2(y+x)+e^x[x^2y^2+2y^2+4xy^2-4x^2y-8xy+2x^2]+\\dfrac{yx^2}{2}+\\dfrac{x^3}{6}"
Comments
Leave a comment