(D2−2DD′+D′2)z=x2y2ex+y
Auxiliary equation is given by
m2−2m+1=0
m=1,1
Complimentary function is given by :
u=ϕ1(y+1.x)+xϕ2(y+1.x)
u=ϕ1(y+x)+xϕ2(y+x)
D=dxd D′=dyd
Particular integral, PI :
=(D2−2DD′+D′2)1x2y2ex+(D2−2DD′+D′2)1y
P.I1=(D2−2DD′+D′2)1exx2y2
Operating the denominator on ex
=((D+1)2−2(D+1)D′+D′2)exexx2y2
=ex[1+(D2−2D−2D′−2DD′+D′2)]1x2y2
=ex[1+(D2−2D−2D′−2DD′+D′2)]−1x2y2
Using binomial expansion of (1+x)−1, expanding the given equation
=ex[1+(D2−2D−2D′−2DD′+D′2)]x2y2
Operating D and D′ on x2y2
=ex[x2y2+2y2+4xy2−4x2y−8xy+2x2]
P.I2=(D2−2DD′+D′2)1y
=(D−D′)21y
Taking D2 common from the denominator
=D2(1−DD′)21y
=D21(1+DD′)−2y
Using binomial expansion of (1+x)−2 and neglecting higher powers as they go to zero
=D21(1+D2D′)y
Operating (1+D2D′) on y
=D21y+D32
=∫∫ydx+2∫∫∫dx
=2yx2+6x3
Complete solution, CS=u+PI1+PI2
z=ϕ1(y+x)+xϕ2(y+x)+ex[x2y2+2y2+4xy2−4x2y−8xy+2x2]+2yx2+6x3
Comments