Question #196121

Solve:(𝐷2 −2𝐷𝐷′ +𝐷′2)𝑍=𝑥2𝑦2𝑒𝑥+𝑦


1
Expert's answer
2021-05-24T16:17:45-0400

(D22DD+D2)z=x2y2ex+y(D^2-2DD'+D'^2)z=x^2y^2e^x+y



Auxiliary equation is given by

m22m+1=0m^2-2m+1=0

m=1,1m=1,1


Complimentary function is given by :

u=ϕ1(y+1.x)+xϕ2(y+1.x)u=\phi_1(y+1.x)+x\phi_2(y+1.x)

u=ϕ1(y+x)+xϕ2(y+x)u=\phi_1(y+x)+x\phi_2(y+x)


D=ddx          D=ddyD=\dfrac{d}{dx}\space\space\space\space\space\space\space\space\space\space D'=\dfrac{d}{dy}


Particular integral, PI :

=1(D22DD+D2)x2y2ex+1(D22DD+D2)y=\dfrac{1}{(D^2-2DD'+D'^2)}x^2y^2e^x+\dfrac{1}{(D^2-2DD'+D'^2)}y


P.I1=1(D22DD+D2)exx2y2P.I_1=\dfrac{1}{(D^2-2DD'+D'^2)}e^xx^2y^2

Operating the denominator on exe^x

=ex((D+1)22(D+1)D+D2)exx2y2=\dfrac{e^x}{((D+1)^2-2(D+1)D'+D'^2)}e^xx^2y^2

=ex1[1+(D22D2D2DD+D2)]x2y2=e^x\dfrac{1}{[1+(D^2-2D-2D'-2DD'+D'^2)]}x^2y^2

=ex[1+(D22D2D2DD+D2)]1x2y2=e^x[1+(D^2-2D-2D'-2DD'+D'^2)]^{-1}x^2y^2

Using binomial expansion of (1+x)1(1+x)^{-1}, expanding the given equation

=ex[1+(D22D2D2DD+D2)]x2y2=e^x[1+(D^2-2D-2D'-2DD'+D'^2)]x^2y^2

Operating DD and DD' on x2y2x^2y^2

=ex[x2y2+2y2+4xy24x2y8xy+2x2]=e^x[x^2y^2+2y^2+4xy^2-4x^2y-8xy+2x^2]


P.I2=1(D22DD+D2)yP.I_2=\dfrac{1}{(D^2-2DD'+D'^2)}y

=1(DD)2y=\dfrac{1}{(D-D')^2}y

Taking D2D^2 common from the denominator

=1D2(1DD)2y=\dfrac{1}{D^2\bigg(1-\dfrac{D'}{D}\bigg)^2}y

=1D2(1+DD)2y=\dfrac{1}{D^2}\bigg(1+\dfrac{D'}{D}\bigg)^{-2}y

Using binomial expansion of (1+x)2(1+x)^{-2} and neglecting higher powers as they go to zero

=1D2(1+2DD)y=\dfrac{1}{D^2}\bigg(1+\dfrac{2D'}{D}\bigg)y

Operating (1+2DD)\bigg(1+\dfrac{2D'}{D}\bigg) on y

=1D2y+2D3=\dfrac{1}{D^2}y+\dfrac{2}{D^3}

=ydx+2dx=\int\int ydx+2\int\int\int dx

=yx22+x36=\dfrac{yx^2}{2}+\dfrac{x^3}{6}


Complete solution, CS=u+PI1+PI2CS=u+PI_1+PI_2

z=ϕ1(y+x)+xϕ2(y+x)+ex[x2y2+2y2+4xy24x2y8xy+2x2]+yx22+x36z=\phi_1(y+x)+x\phi_2(y+x)+e^x[x^2y^2+2y^2+4xy^2-4x^2y-8xy+2x^2]+\dfrac{yx^2}{2}+\dfrac{x^3}{6}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS