Answer to Question #196121 in Differential Equations for Ch.Trinadh

Question #196121

Solve:(𝐷2 βˆ’2𝐷𝐷′ +𝐷′2)𝑍=π‘₯2𝑦2𝑒π‘₯+𝑦


1
Expert's answer
2021-05-24T16:17:45-0400

"(D^2-2DD'+D'^2)z=x^2y^2e^x+y"



Auxiliary equation is given by

"m^2-2m+1=0"

"m=1,1"


Complimentary function is given by :

"u=\\phi_1(y+1.x)+x\\phi_2(y+1.x)"

"u=\\phi_1(y+x)+x\\phi_2(y+x)"


"D=\\dfrac{d}{dx}\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space D'=\\dfrac{d}{dy}"


Particular integral, PI :

"=\\dfrac{1}{(D^2-2DD'+D'^2)}x^2y^2e^x+\\dfrac{1}{(D^2-2DD'+D'^2)}y"


"P.I_1=\\dfrac{1}{(D^2-2DD'+D'^2)}e^xx^2y^2"

Operating the denominator on "e^x"

"=\\dfrac{e^x}{((D+1)^2-2(D+1)D'+D'^2)}e^xx^2y^2"

"=e^x\\dfrac{1}{[1+(D^2-2D-2D'-2DD'+D'^2)]}x^2y^2"

"=e^x[1+(D^2-2D-2D'-2DD'+D'^2)]^{-1}x^2y^2"

Using binomial expansion of "(1+x)^{-1}", expanding the given equation

"=e^x[1+(D^2-2D-2D'-2DD'+D'^2)]x^2y^2"

Operating "D" and "D'" on "x^2y^2"

"=e^x[x^2y^2+2y^2+4xy^2-4x^2y-8xy+2x^2]"


"P.I_2=\\dfrac{1}{(D^2-2DD'+D'^2)}y"

"=\\dfrac{1}{(D-D')^2}y"

Taking "D^2" common from the denominator

"=\\dfrac{1}{D^2\\bigg(1-\\dfrac{D'}{D}\\bigg)^2}y"

"=\\dfrac{1}{D^2}\\bigg(1+\\dfrac{D'}{D}\\bigg)^{-2}y"

Using binomial expansion of "(1+x)^{-2}" and neglecting higher powers as they go to zero

"=\\dfrac{1}{D^2}\\bigg(1+\\dfrac{2D'}{D}\\bigg)y"

Operating "\\bigg(1+\\dfrac{2D'}{D}\\bigg)" on y

"=\\dfrac{1}{D^2}y+\\dfrac{2}{D^3}"

"=\\int\\int ydx+2\\int\\int\\int dx"

"=\\dfrac{yx^2}{2}+\\dfrac{x^3}{6}"


Complete solution, "CS=u+PI_1+PI_2"

"z=\\phi_1(y+x)+x\\phi_2(y+x)+e^x[x^2y^2+2y^2+4xy^2-4x^2y-8xy+2x^2]+\\dfrac{yx^2}{2}+\\dfrac{x^3}{6}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS