We have
−x(x+y)dx=y(x+y)dy=(x−y)(2x+2y+z)dz
−x(x+y)dx=y(x+y)dy⟹−xdx=ydy
by integration, we get −ln(x)=ln(y)−ln(c1)⟹c1=xy
Now also
−x(x+y)dx=y(x+y)dy=(x−y)(2x+2y+z)dz
=(x−y)z2dx+2dy+dz
⟹(x−y)(2x+2y+z)dz=(x−y)z2dx+2dy+dz
⟹2x+2y+zdz=z2dx+2dy+dz
⟹zdz=(2x+2y+z)(2dx+2dy+dz)
By integration, we get
2z2=2(2x+y+z)2+2c2
⟹c2=z2−(2x+y+z)2
Hence, solution is :
c2=f(c1)
⟹z2−(2x+y+z)2=f(xy) .
Comments