Question #195906

Solve dx/x(x+y) = dy/-y(x+y) = dz/-(x-y)(2x+2y+z)


1
Expert's answer
2021-05-20T17:28:12-0400

We have 

dxx(x+y)=dyy(x+y)=dz(xy)(2x+2y+z)\frac{dx}{-x(x+y)} = \frac{dy}{y(x+y)} = \frac{dz}{(x-y)(2x+2y+z)}

 

dxx(x+y)=dyy(x+y)    dxx=dyy\frac{dx}{-x(x+y)} = \frac{dy}{y(x+y)}\implies \frac{dx}{-x} = \frac{dy}{y}


by integration, we get ln(x)=ln(y)ln(c1)    c1=xy-\ln(x) = \ln(y) - \ln(c_1) \implies c_1 = xy


Now also 

dxx(x+y)=dyy(x+y)=dz(xy)(2x+2y+z)\frac{dx}{-x(x+y)} = \frac{dy}{y(x+y)} = \frac{dz}{(x-y)(2x+2y+z)}



=2dx+2dy+dz(xy)z= \frac{2dx+2dy+dz}{(x-y)z}

    dz(xy)(2x+2y+z)=2dx+2dy+dz(xy)z\implies \frac{dz}{(x-y)(2x+2y+z)} = \frac{2dx+2dy+dz}{(x-y)z}




    dz2x+2y+z=2dx+2dy+dzz\implies \frac{dz}{2x+2y+z} = \frac{2dx+2dy+dz}{z}


    zdz=(2x+2y+z)(2dx+2dy+dz)\implies zdz = (2x+2y+z) (2dx+2dy+dz)

By integration, we get


z22=(2x+y+z)22+c22\frac{z^2}{2} = \frac{(2x+y+z)^2}{2} + \frac{c_2}{2}




    c2=z2(2x+y+z)2\implies c_2 = z^2- (2x+y+z)^2


Hence, solution is :


c2=f(c1)c_2 = f(c_1)




    z2(2x+y+z)2=f(xy)\implies z^2- (2x+y+z)^2 = f(xy)

 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS