Solve dx/x(x+y) = dy/-y(x+y) = dz/-(x-y)(2x+2y+z)
We have
"\\frac{dx}{-x(x+y)} = \\frac{dy}{y(x+y)} = \\frac{dz}{(x-y)(2x+2y+z)}""\\frac{dx}{-x(x+y)} = \\frac{dy}{y(x+y)}\\implies \\frac{dx}{-x} = \\frac{dy}{y}"
by integration, we get "-\\ln(x) = \\ln(y) - \\ln(c_1) \\implies c_1 = xy"
Now also
"\\frac{dx}{-x(x+y)} = \\frac{dy}{y(x+y)} = \\frac{dz}{(x-y)(2x+2y+z)}"
"\\implies \\frac{dz}{(x-y)(2x+2y+z)} = \\frac{2dx+2dy+dz}{(x-y)z}"
"\\implies zdz = (2x+2y+z) (2dx+2dy+dz)"
By integration, we get
Hence, solution is :
.
Comments
Leave a comment