Question #195875

 Solve the equation of the Linear Homogeneous Differential Equations with Constant 

Coefficients.

1. Solve y’’ – y’ – 2y = 0

2. Solve y’’ + 4y = 0

3. (D3 + 3D2 – 4D)y = 0

4. (D2 – 6D + 9)y = 0


1
Expert's answer
2021-05-21T07:31:07-0400

1) yy2y=0y''-y'-2y=0


Auxiliary equation is-


m2m2=0m22m+m2=0m(m2)+1(m2)=0(m2)(m+1)=0m=2,1m^2-m-2=0\\m^2-2m+m-2=0\\m(m-2)+1(m-2)=0\\(m-2)(m+1)=0\\m=2,-1


Solution is-

y=c1e2x+c2exy=c_1e^{2x}+c_2e^{-x}


2)y+4y=02)y''+4y=0


Auxiliary equation is-

m2+4=0(m+2i)(m2i)=0m=±2im^2+4=0\\(m+2i)(m-2i)=0\\m=\pm2i


Solution is-

y=c1cos2x+c2sin2xy=c_1 cos2x+c_2sin2x


(3)(D3+3D24D)y=0(3)(D^3+3D^2-4D)y=0


Auxiliary equation is-

m3+3m24m=0m(m2+3m4)=0m(m2+4mm4)=0m(m+4)(m1)=0m=0,1,4m^3+3m^2-4m=0\\m(m^2+3m-4)=0\\m(m^2+4m-m-4)=0\\m(m+4)(m-1)=0\\m=0,1,-4


Solution is-

y=c1+c2ex+c3e4xy=c_1+c_2e^x+c_3e^{-4x}


(4)(D26D+9)y=0(4) (D^2 – 6D + 9)y = 0


Auxiliary equation-

m26m+9=0(m3)2=0m=3,3m^2-6m+9=0\\(m-3)^2=0\\m=3,3


Solution is-

y=(c1+c2x)e3xy=(c_1+c_2x)e^{3x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS