First we solve the related homogeneous equation
y′′+2y′+5=0 The characteristic equation is
r2+2r+5=0
r1=−1−2i,r2=−1+2i Hence, the general solution of the homogeneous equation is given by
y0(x)=C1e−xcos2x+C2e−xsin2x where C1,C2 are constant numbers.
Let’s go back to the nonhomogeneous equation
y′′+2y′+5y=34sinxcosx
y′′+2y′+5=17sin2xFind a particular solution of the nonhomogeneous differential equation.
y1=(Ax+B)cos2x+(Cx+D)sin2x The derivatives are given by
y1′=Acos2x−2(Ax+B)sin2x
+Csin2x+2(Cx+D)cos2x
y1′′=−2Asin2x−2Asin2x−4(Ax+B)cos2x
+2Ccos2x+2Ccos2x−4(Cx+D)sin2x Substituting the function y1 and its derivatives in the differential equation yields:
−2Asin2x−2Asin2x−4(Ax+B)cos2x
+2Ccos2x+2Ccos2x−4(Cx+D)sin2x
+2Acos2x−4(Ax+B)sin2x
+2Csin2x+4(Cx+D)cos2x
+5(Ax+B)cos2x+5(Cx+D)sin2x=17sin2x
−4A−4Cx−4D−4Ax−4B+2C=17
−4Ax−4B+4C+2A+4Cx+4D=0
−4A−4C=0
−4A−4B+2C−4D=17
−4A+4C=0
2A−4B+4C+4D=0
A=C=0
B=D
−8B=17
Therefore we will look for a particular solution of the form
y1=−817cos2x−817sin2x
Now we can write the full solution of the nonhomogeneous equation:
y=C1e−xcos2x+C2e−xsin2x
−817cos2x−817sin2x
Comments
Leave a comment