Question #193777

Solve 2(2y^2+yz -z^2)dx+x(4y +z)dy+x(y -2z)dz= 0


1
Expert's answer
2022-01-10T13:10:46-0500

2(2y2+yzz2)dx+x(4y+z)dy+x(y2z)dz=02(2y^2+yz -z^2)dx+x(4y +z)dy+x(y -2z)dz= 0


condition if the equation is integrable:

P(R/yQ/z)Q(R/xP/z)+R(Q/xP/y)=0P(\partial R/\partial y-\partial Q/\partial z)-Q(\partial R/\partial x-\partial P/\partial z)+R(\partial Q/\partial x-\partial P/\partial y)=0

we have:

P=2(2y2+yzz2),Q=x(4y+z),R=x(y2z)P=2(2y^2+yz -z^2),Q=x(4y +z),R=x(y -2z)

R/y=x,Q/z=x,R/x=y\partial R/\partial y=x,\partial Q/\partial z=x,\partial R/\partial x=y

P/z=2y4z,Q/x=4y+z,P/y=8y+2z\partial P/\partial z=2y-4z,\partial Q/\partial x=4y+z,\partial P/\partial y=8y+2z


x(4y+z)(y+4z)+x(y2z)(4yz)=2xz(4y+z)0-x(4y +z)(-y+4z)+x(y -2z)(-4y-z)=-2xz(4y+z)\neq 0


so, the equation is not integrable


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS