Solve two dimensional Laplace equation d²u/dx²+d²u/dy²=0 ,subject to the condition u(0,y)=u(l,y)=u(x,0)=0, u(x,a)=sin nmx/l
Given equation-
"\\dfrac{d^{2}u}{dx^{2}}+\\dfrac{d^{2}u}{dy^{2}}=0".........1)
, subject to condition u(0,y)=u(l,y)="u(x,0)=0,u(x,a)=sin\\dfrac{nmx}{l}"
Let "u=XY"
where X is a function of x only and Y is a function of y only .
"=\\dfrac{\\partial^{2}u}{\\partial x^{2}}=\\dfrac{\\partial(XY)}{\\partial x^{2}}=Y\\dfrac{d^{2}X}{dx^{2}}"
"=" "\\dfrac{\\partial^{2}u}{\\partial y^{2}}=\\dfrac{\\partial(XY)}{\\partial y^{2}}=X\\dfrac{d^{2}Y}{dy^{2}}"
From 1) ,we can say that ,
"YX''+XY''=0"
"\\implies" "\\dfrac{X''}{X}+\\dfrac{Y''}{Y}=0"
Case 1, we have
"\\dfrac{X''}{X}=" "-\\dfrac{Y''}{Y}=p^{2}"
"(i)" "\\dfrac{X''}{X}=p^{2}"
"X''-P^{2}X=0"
auxiliary equation is given by -
"m^{2}-p^{2}=0"
"m={\\pm}p"
"CF=C_1e^{px}+C_2e^{-px}"
"PI=0"
"X=C_1e^{px}+C_2e^{-px}"
"(ii)"
"\\dfrac{-Y''}{Y}=p^{2}\\implies" "Y''+p^{2}Y=0"
Auxiliary equation is "m^{2}+p^{2}=0\\implies" "m={\\pm}pi"
"CF=C_3cos py+C_4sinpy"
"PI=0"
"y=" "C_3cos py+C_4sinpy"
Now X(0)=0
"c_1+c_2=0\\implies" "c_2=-c_1"
"X(l)=0"
"\\implies" "C_1e^{pl}++C_2e^{-pl}=0"
"\\implies" "C_1(e^{pl}-e^{-pl})=0"
"c_1=0"
"c_2=0"
X=0"\\implies" U=XY =0 which is impossible.
hence we reject case 1 .
case 2) , when
"\\dfrac{X''}{X} =-\\dfrac{Y''}{Y}=0"
"(i)" "\\dfrac{X''}{X}=0"
"X''=0\\implies" "X=c_5x+c_6"
"(ii)" "-\\dfrac{Y''}{Y}=0"
"\\implies" "Y''=0" "\\implies" "Y=c_7y+c_8"
Now , "X(0)=0\\implies" "c_6=0"
"X(l)=0"
"\\implies" "c_5l+c_6=0\\implies" "c_5l=0"
"\\implies" "c_5=0" (since "{\\neq}0)"
"\\therefore" "X=0"
Hence , we reject case 2.
Case 3)
"\\dfrac{X''}{X}=-\\dfrac{Y''}{Y}=p^{2}"
"(i)-\\dfrac{X''}{X}=p^{2}"
"\\implies" "X''+p^{2}X=0\\implies" "\\dfrac{d^{2}X}{dx^{2}}+p^{2}X=0"
Auxiliary equation is "m^{2}+p^{2}=0" =0 "m{\\neq}pi"
"CF=c_9cos px+c_{10}sinpx"
"PI=0"
"X=" "c_9cos px+c_{10}sinpx"
"(ii)" "\\dfrac{-Y''}{Y}=-P^{2}"
"\\implies" "\\dfrac{d^{2}Y}{dy^{2}}-p^{2}Y=0"
auxiliary equation is "m^{2}-p^{2}=0"
"\\therefore" CF="C_{11}e^{PY}+C_{12}e^{-PY}"
"PI=0"
"\\therefore" "CF=" "C_{11}e^{PY}+C_{12}e^{-PY}"
"PI=0"
"Hence ," "Y=C_{11}e^{py}+C_{12}e^{-py}"
Now, "X(0)=0\\implies" "c_9=0"
"\\therefore X=c_{10}sinpx"
"X(l)=0"
"c_{10}sinpl=0"
"\\implies" "sinpl=0=sinn{\\pi},n\\isin" I
"\\therefore" "p=\\dfrac{n{\\pi}}{l}"
"\\therefore" "X=c_{10}sin\\dfrac{n{\\pi}x}{l}"
"Again ,Y(0)=0"
"\\implies c_{11}+c_{12}=0\\implies c_{11}=-c_{12}"
"Y=c_{11}(e^{py}-e^{-py})=c_{11}(e^\\dfrac{n{\\pi}y}{l}-e^\\dfrac{-n{\\pi}y}{l})"
"\\therefore" "u=XY" ="c_{11}c_{10}sin\\dfrac{n{\\pi}x}{l}(e^\\dfrac{n{\\pi}y}{l}-e^\\dfrac{-n{\\pi}y}{l})"
"or\\ u(x,y)=b_nsin\\dfrac{n{\\pi}x}{l}(e^\\dfrac{n{\\pi}y}{l}-e^\\dfrac{-n{\\pi}y}{l})"
"now, u(x,a)=sin\\dfrac{n{\\pi}x}{l}=b_nsin\\dfrac{n{\\pi}x}{l}" "(e^\\dfrac{n{\\pi}a}{l}-e^\\dfrac{-n{\\pi}a}{l})"
"\\implies" "b_n=\\dfrac{1}{(e^\\dfrac{n{\\pi}a}{l}-e^\\dfrac{-n{\\pi}a}{l})}" "=\\dfrac{1}{2sinh \\dfrac{(n{\\pi}a)}{l}}"
Comments
Leave a comment