Question #193734

Solve (D^2 -4D+3)y = e^x cos 2x + cos3x 


1
Expert's answer
2021-05-25T18:07:54-0400

We have given the differential equation,


(D24D+3)y=excos2x+cos3x(D^2 -4D+3)y = e^x cos 2x + cos3x


Auxiliary equation can be given as,

m24m+3=0m23mm+3=0m(m3)1(m3)=0m=1,2m^2-4m+3 =0\\ m^2-3m-m+3 = 0\\ m(m-3)-1(m-3) = 0\\ m=1,2  

Hence, CF=C1ex+C2e2xCF = C_1e^x+C_2e^{2x}

Particular integral can be calculated as,


PI=cos3x94D+3+excos2x(D+1)24(D+1)+3PI = \dfrac{cos3x}{-9-4D+3}+ \dfrac{e^xcos2x}{(D+1)^2-4(D+1)+3}


We know,

1f(D2)sinax=sinaxf(a2)\dfrac{1}{f(D^2)}sinax = \dfrac{sinax}{f(-a^2)} and 1f(D2)cosax=cosaxf(a2)\dfrac{1}{f(D^2)}cosax = \dfrac{cosax}{f(-a^2)}


Now Multiplying by (D3)(D-3) in numerator and denominator of first part of particular integral.


PI=cos3x(D3)2(D29)+excos2xD22DPI = \dfrac{cos3x(D-3)}{-2(D^2-9)}+ \dfrac{e^xcos2x}{D^2-2D}


After solving we get,



PI=3sin3x3cos3x36+ex(2sin2x2cos2x)16PI = \dfrac{-3sin3x-3cos3x}{36} + \dfrac{e^x(-2sin2x-2cos2x)}{16}


Hence , the complete solution is

y=C1ex+C2e2x+3sin3x3cos3x36+ex(2sin2x2cos2x)16y = C_1e^x+C_2e^{2x}+ \dfrac{-3sin3x-3cos3x}{36} + \dfrac{e^x(-2sin2x-2cos2x)}{16}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS