We have given the differential equation,
(D2−4D+3)y=excos2x+cos3x
Auxiliary equation can be given as,
m2−4m+3=0m2−3m−m+3=0m(m−3)−1(m−3)=0m=1,2
Hence, CF=C1ex+C2e2x
Particular integral can be calculated as,
PI=−9−4D+3cos3x+(D+1)2−4(D+1)+3excos2x
We know,
f(D2)1sinax=f(−a2)sinax and f(D2)1cosax=f(−a2)cosax
Now Multiplying by (D−3) in numerator and denominator of first part of particular integral.
PI=−2(D2−9)cos3x(D−3)+D2−2Dexcos2x
After solving we get,
PI=36−3sin3x−3cos3x+16ex(−2sin2x−2cos2x)
Hence , the complete solution is
y=C1ex+C2e2x+36−3sin3x−3cos3x+16ex(−2sin2x−2cos2x)
Comments