Solve (D^2 -4D+3)y = e^x cos 2x + cos3x
We have given the differential equation,
"(D^2 -4D+3)y = e^x cos 2x + cos3x"
Auxiliary equation can be given as,
"m^2-4m+3 =0\\\\\n\nm^2-3m-m+3 = 0\\\\\n\nm(m-3)-1(m-3) = 0\\\\\n\nm=1,2"
Hence, "CF = C_1e^x+C_2e^{2x}"
Particular integral can be calculated as,
"PI = \\dfrac{cos3x}{-9-4D+3}+ \\dfrac{e^xcos2x}{(D+1)^2-4(D+1)+3}"
We know,
"\\dfrac{1}{f(D^2)}sinax = \\dfrac{sinax}{f(-a^2)}" and "\\dfrac{1}{f(D^2)}cosax = \\dfrac{cosax}{f(-a^2)}"
Now Multiplying by "(D-3)" in numerator and denominator of first part of particular integral.
"PI = \\dfrac{cos3x(D-3)}{-2(D^2-9)}+ \\dfrac{e^xcos2x}{D^2-2D}"
After solving we get,
"PI = \\dfrac{-3sin3x-3cos3x}{36} + \\dfrac{e^x(-2sin2x-2cos2x)}{16}"
Hence , the complete solution is
"y = C_1e^x+C_2e^{2x}+ \\dfrac{-3sin3x-3cos3x}{36} + \\dfrac{e^x(-2sin2x-2cos2x)}{16}"
Comments
Leave a comment