d2x/dt2=x-2y, d2y/dt2=4x+5y find general solution using matrix method.
"z''=\\begin{pmatrix}\n 1 & -2 \\\\\n 4 & 5\n\\end{pmatrix}z"
"\\begin{vmatrix}\n 1-\\lambda & -2 \\\\\n 4 & 5-\\lambda\n\\end{vmatrix}=0"
"(1-\\lambda)(5-\\lambda)+8=0"
"\\lambda^2+6\\lambda -13=0"
"\\lambda=\\frac{-6\\pm \\sqrt{36+52}}{2}=-3\\pm \\sqrt{22}"
for "\\lambda_1=-3-\\sqrt{22}" :
"(4+\\sqrt{22})x-2y=0"
"4x+(8+\\sqrt{22})y=0"
"x\\sqrt{22}-(10+\\sqrt{22})y=0"
eigenvector:
"\\begin{pmatrix}\n 1 \\\\\n 1+10\/\\sqrt{22}\n\\end{pmatrix}"
for "\\lambda_2=-3+\\sqrt{22}" :
"(4-\\sqrt{22})x-2y=0"
"4x+(8-\\sqrt{22})y=0"
"-x\\sqrt{22}-(10-\\sqrt{22})y=0"
eigenvector:
"\\begin{pmatrix}\n 1 \\\\\n 1-10\/\\sqrt{22}\n\\end{pmatrix}"
"z'(t)=c_1e^{-(3+\\sqrt{22})t}\\begin{pmatrix}\n 1 \\\\\n 1+10\/\\sqrt{22}\n\\end{pmatrix}+c_2e^{-(3-\\sqrt{22})t}\\begin{pmatrix}\n 1 \\\\\n 1-10\/\\sqrt{22}\n\\end{pmatrix}"
"z(t)=C_1e^{-(3+\\sqrt{22})t}\\begin{pmatrix}\n 1 \\\\\n 1+10\/\\sqrt{22}\n\\end{pmatrix}+C_2e^{-(3-\\sqrt{22})t}\\begin{pmatrix}\n 1 \\\\\n 1-10\/\\sqrt{22}\n\\end{pmatrix}"
Comments
Leave a comment