Question #194962

d2x/dt2=x-2y, d2y/dt2=4x+5y find general solution using matrix method.


1
Expert's answer
2022-02-08T12:22:00-0500

z=(1245)zz''=\begin{pmatrix} 1 & -2 \\ 4 & 5 \end{pmatrix}z


1λ245λ=0\begin{vmatrix} 1-\lambda & -2 \\ 4 & 5-\lambda \end{vmatrix}=0


(1λ)(5λ)+8=0(1-\lambda)(5-\lambda)+8=0

λ2+6λ13=0\lambda^2+6\lambda -13=0

λ=6±36+522=3±22\lambda=\frac{-6\pm \sqrt{36+52}}{2}=-3\pm \sqrt{22}


for λ1=322\lambda_1=-3-\sqrt{22} :

(4+22)x2y=0(4+\sqrt{22})x-2y=0

4x+(8+22)y=04x+(8+\sqrt{22})y=0

x22(10+22)y=0x\sqrt{22}-(10+\sqrt{22})y=0

eigenvector:

(11+10/22)\begin{pmatrix} 1 \\ 1+10/\sqrt{22} \end{pmatrix}


for λ2=3+22\lambda_2=-3+\sqrt{22} :

(422)x2y=0(4-\sqrt{22})x-2y=0

4x+(822)y=04x+(8-\sqrt{22})y=0

x22(1022)y=0-x\sqrt{22}-(10-\sqrt{22})y=0

eigenvector:

(1110/22)\begin{pmatrix} 1 \\ 1-10/\sqrt{22} \end{pmatrix}


z(t)=c1e(3+22)t(11+10/22)+c2e(322)t(1110/22)z'(t)=c_1e^{-(3+\sqrt{22})t}\begin{pmatrix} 1 \\ 1+10/\sqrt{22} \end{pmatrix}+c_2e^{-(3-\sqrt{22})t}\begin{pmatrix} 1 \\ 1-10/\sqrt{22} \end{pmatrix}


z(t)=C1e(3+22)t(11+10/22)+C2e(322)t(1110/22)z(t)=C_1e^{-(3+\sqrt{22})t}\begin{pmatrix} 1 \\ 1+10/\sqrt{22} \end{pmatrix}+C_2e^{-(3-\sqrt{22})t}\begin{pmatrix} 1 \\ 1-10/\sqrt{22} \end{pmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS