Question #195974

Y"+6y'+9y=-xe^4x by variation of parameters


1
Expert's answer
2021-05-24T00:52:03-0400
y+6y+9y=xe4xy''+6y'+9y=-xe^{4x}

The corresponding homogeneous equation is


y+6y+9y=0y''+6y'+9y=0

The auxiliary (characteristic) equation is given by 


r2+6r+9=0r^2+6r+9=0

(r+3)2=0(r+3)^2=0

There is one repeated real root r=3.r=-3.

The general solution of the homogeneous equation is


yc=C1e3x+C2xe3xy_c=C_1e^{-3x}+C_2xe^{-3x}

We have

y1=e3x,y2=xe3x,g(x)=xe4xy_1=e^{-3x}, y_2=xe^{-3x}, g(x)=-xe^{4x}

The Wronskian of these two functions is


W(y1,y2)=y1y2y1y2=e3xxe3x3e3x(13x)e3xW(y_1,y_2)=\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\begin{vmatrix} e^{-3x} & xe^{-3x} \\ -3e^{-3x} & (1-3x)e^{-3x} \end{vmatrix}

=e3x(13x)e3xxe3x(3)e3x=e^{-3x}(1-3x)e^{-3x}-xe^{-3x}(-3)e^{-3x}

=e6x(13x+3x)=e6x=e^{-6x}(1-3x+3x)=e^{-6x}



W1=0y2g(x)y2=0xe3xxe4x(13x)e3x=x2exW_1=\begin{vmatrix} 0 & y_2 \\ g(x) & y_2' \end{vmatrix}=\begin{vmatrix} 0 & xe^{-3x} \\ -xe^{4x} & (1-3x)e^{-3x} \end{vmatrix}=x^2e^x


W2=y10y1g(x)=e3x03e3xxe4x=xexW_2=\begin{vmatrix} y_1 & 0 \\ y_1' & g(x) \end{vmatrix}=\begin{vmatrix} e^{-3x} & 0 \\ -3e^{-3x} & -xe^{4x} \end{vmatrix}=xe^x

u1=W1Wdx=x2exe6xdx=x2e7xdxu_1=\int\dfrac{W_1}{W}dx=\int\dfrac{x^2e^x}{e^{-6x}}dx=\int x^2e^{7x}dx

=17x2e7x27xe7xdx=\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{7}\int xe^{7x}dx

=17x2e7x249xe7x+249e7xdx=\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{49}xe^{7x}+\dfrac{2}{49}\int e^{7x}dx

=17x2e7x249xe7x+2343e7x=\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{49}xe^{7x}+\dfrac{2}{343}e^{7x}


u2=W2Wdx=xexe6xdx=xe7xdxu_2=\int\dfrac{W_2}{W}dx=\int\dfrac{xe^x}{e^{-6x}}dx=\int xe^{7x}dx

=17xe7x17e7xdx=\dfrac{1}{7}xe^{7x}-\dfrac{1}{7}\int e^{7x}dx

=17xe7x149e7x=\dfrac{1}{7}xe^{7x}-\dfrac{1}{49}e^{7x}

yp=u1y1+u2y2y_p=u_1y_1+u_2y_2

=(17x2e7x249xe7x+2343e7x)(e3x)+=(\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{49}xe^{7x}+\dfrac{2}{343}e^{7x})(e^{-3x})+

+(17xe7x149e7x)(xe3x)+(\dfrac{1}{7}xe^{7x}-\dfrac{1}{49}e^{7x})(xe^{-3x})

=(27x2349x+2343)e4x=(\dfrac{2}{7}x^2-\dfrac{3}{49}x+\dfrac{2}{343})e^{4x}

The general solution of the homogeneous equation is


y=yc+ypy=y_c+y_p


=C1e3x+C2xe3x+(27x2349x+2343)e4x=C_1e^{-3x}+C_2xe^{-3x}+\big(\dfrac{2}{7}x^2-\dfrac{3}{49}x+\dfrac{2}{343}\big)e^{4x}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS