Y"+6y'+9y=-xe^4x by variation of parameters
The corresponding homogeneous equation is
The auxiliary (characteristic) equation is given by
"(r+3)^2=0"
There is one repeated real root "r=-3."
The general solution of the homogeneous equation is
We have
"y_1=e^{-3x}, y_2=xe^{-3x}, g(x)=-xe^{4x}"The Wronskian of these two functions is
"=e^{-3x}(1-3x)e^{-3x}-xe^{-3x}(-3)e^{-3x}"
"=e^{-6x}(1-3x+3x)=e^{-6x}"
"u_1=\\int\\dfrac{W_1}{W}dx=\\int\\dfrac{x^2e^x}{e^{-6x}}dx=\\int x^2e^{7x}dx"
"=\\dfrac{1}{7}x^2e^{7x}-\\dfrac{2}{7}\\int xe^{7x}dx"
"=\\dfrac{1}{7}x^2e^{7x}-\\dfrac{2}{49}xe^{7x}+\\dfrac{2}{49}\\int e^{7x}dx"
"=\\dfrac{1}{7}x^2e^{7x}-\\dfrac{2}{49}xe^{7x}+\\dfrac{2}{343}e^{7x}"
"=\\dfrac{1}{7}xe^{7x}-\\dfrac{1}{7}\\int e^{7x}dx"
"=\\dfrac{1}{7}xe^{7x}-\\dfrac{1}{49}e^{7x}"
"y_p=u_1y_1+u_2y_2"
"=(\\dfrac{1}{7}x^2e^{7x}-\\dfrac{2}{49}xe^{7x}+\\dfrac{2}{343}e^{7x})(e^{-3x})+"
"+(\\dfrac{1}{7}xe^{7x}-\\dfrac{1}{49}e^{7x})(xe^{-3x})"
"=(\\dfrac{2}{7}x^2-\\dfrac{3}{49}x+\\dfrac{2}{343})e^{4x}"
The general solution of the homogeneous equation is
Comments
Leave a comment