y ′ ′ + 6 y ′ + 9 y = − x e 4 x y''+6y'+9y=-xe^{4x} y ′′ + 6 y ′ + 9 y = − x e 4 x The corresponding homogeneous equation is
y ′ ′ + 6 y ′ + 9 y = 0 y''+6y'+9y=0 y ′′ + 6 y ′ + 9 y = 0 The auxiliary (characteristic) equation is given by
r 2 + 6 r + 9 = 0 r^2+6r+9=0 r 2 + 6 r + 9 = 0
( r + 3 ) 2 = 0 (r+3)^2=0 ( r + 3 ) 2 = 0 There is one repeated real root r = − 3. r=-3. r = − 3.
The general solution of the homogeneous equation is
y c = C 1 e − 3 x + C 2 x e − 3 x y_c=C_1e^{-3x}+C_2xe^{-3x} y c = C 1 e − 3 x + C 2 x e − 3 x We have
y 1 = e − 3 x , y 2 = x e − 3 x , g ( x ) = − x e 4 x y_1=e^{-3x}, y_2=xe^{-3x}, g(x)=-xe^{4x} y 1 = e − 3 x , y 2 = x e − 3 x , g ( x ) = − x e 4 x The Wronskian of these two functions is
W ( y 1 , y 2 ) = ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = ∣ e − 3 x x e − 3 x − 3 e − 3 x ( 1 − 3 x ) e − 3 x ∣ W(y_1,y_2)=\begin{vmatrix}
y_1 & y_2 \\
y_1' & y_2'
\end{vmatrix}=\begin{vmatrix}
e^{-3x} & xe^{-3x} \\
-3e^{-3x} & (1-3x)e^{-3x}
\end{vmatrix} W ( y 1 , y 2 ) = ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣ = ∣ ∣ e − 3 x − 3 e − 3 x x e − 3 x ( 1 − 3 x ) e − 3 x ∣ ∣
= e − 3 x ( 1 − 3 x ) e − 3 x − x e − 3 x ( − 3 ) e − 3 x =e^{-3x}(1-3x)e^{-3x}-xe^{-3x}(-3)e^{-3x} = e − 3 x ( 1 − 3 x ) e − 3 x − x e − 3 x ( − 3 ) e − 3 x
= e − 6 x ( 1 − 3 x + 3 x ) = e − 6 x =e^{-6x}(1-3x+3x)=e^{-6x} = e − 6 x ( 1 − 3 x + 3 x ) = e − 6 x
W 1 = ∣ 0 y 2 g ( x ) y 2 ′ ∣ = ∣ 0 x e − 3 x − x e 4 x ( 1 − 3 x ) e − 3 x ∣ = x 2 e x W_1=\begin{vmatrix}
0 & y_2 \\
g(x) & y_2'
\end{vmatrix}=\begin{vmatrix}
0 & xe^{-3x} \\
-xe^{4x} & (1-3x)e^{-3x}
\end{vmatrix}=x^2e^x W 1 = ∣ ∣ 0 g ( x ) y 2 y 2 ′ ∣ ∣ = ∣ ∣ 0 − x e 4 x x e − 3 x ( 1 − 3 x ) e − 3 x ∣ ∣ = x 2 e x
W 2 = ∣ y 1 0 y 1 ′ g ( x ) ∣ = ∣ e − 3 x 0 − 3 e − 3 x − x e 4 x ∣ = x e x W_2=\begin{vmatrix}
y_1 & 0 \\
y_1' & g(x)
\end{vmatrix}=\begin{vmatrix}
e^{-3x} & 0 \\
-3e^{-3x} & -xe^{4x}
\end{vmatrix}=xe^x W 2 = ∣ ∣ y 1 y 1 ′ 0 g ( x ) ∣ ∣ = ∣ ∣ e − 3 x − 3 e − 3 x 0 − x e 4 x ∣ ∣ = x e x
u 1 = ∫ W 1 W d x = ∫ x 2 e x e − 6 x d x = ∫ x 2 e 7 x d x u_1=\int\dfrac{W_1}{W}dx=\int\dfrac{x^2e^x}{e^{-6x}}dx=\int x^2e^{7x}dx u 1 = ∫ W W 1 d x = ∫ e − 6 x x 2 e x d x = ∫ x 2 e 7 x d x
= 1 7 x 2 e 7 x − 2 7 ∫ x e 7 x d x =\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{7}\int xe^{7x}dx = 7 1 x 2 e 7 x − 7 2 ∫ x e 7 x d x
= 1 7 x 2 e 7 x − 2 49 x e 7 x + 2 49 ∫ e 7 x d x =\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{49}xe^{7x}+\dfrac{2}{49}\int e^{7x}dx = 7 1 x 2 e 7 x − 49 2 x e 7 x + 49 2 ∫ e 7 x d x
= 1 7 x 2 e 7 x − 2 49 x e 7 x + 2 343 e 7 x =\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{49}xe^{7x}+\dfrac{2}{343}e^{7x} = 7 1 x 2 e 7 x − 49 2 x e 7 x + 343 2 e 7 x
u 2 = ∫ W 2 W d x = ∫ x e x e − 6 x d x = ∫ x e 7 x d x u_2=\int\dfrac{W_2}{W}dx=\int\dfrac{xe^x}{e^{-6x}}dx=\int xe^{7x}dx u 2 = ∫ W W 2 d x = ∫ e − 6 x x e x d x = ∫ x e 7 x d x
= 1 7 x e 7 x − 1 7 ∫ e 7 x d x =\dfrac{1}{7}xe^{7x}-\dfrac{1}{7}\int e^{7x}dx = 7 1 x e 7 x − 7 1 ∫ e 7 x d x
= 1 7 x e 7 x − 1 49 e 7 x =\dfrac{1}{7}xe^{7x}-\dfrac{1}{49}e^{7x} = 7 1 x e 7 x − 49 1 e 7 x
y p = u 1 y 1 + u 2 y 2 y_p=u_1y_1+u_2y_2 y p = u 1 y 1 + u 2 y 2
= ( 1 7 x 2 e 7 x − 2 49 x e 7 x + 2 343 e 7 x ) ( e − 3 x ) + =(\dfrac{1}{7}x^2e^{7x}-\dfrac{2}{49}xe^{7x}+\dfrac{2}{343}e^{7x})(e^{-3x})+ = ( 7 1 x 2 e 7 x − 49 2 x e 7 x + 343 2 e 7 x ) ( e − 3 x ) +
+ ( 1 7 x e 7 x − 1 49 e 7 x ) ( x e − 3 x ) +(\dfrac{1}{7}xe^{7x}-\dfrac{1}{49}e^{7x})(xe^{-3x}) + ( 7 1 x e 7 x − 49 1 e 7 x ) ( x e − 3 x )
= ( 2 7 x 2 − 3 49 x + 2 343 ) e 4 x =(\dfrac{2}{7}x^2-\dfrac{3}{49}x+\dfrac{2}{343})e^{4x} = ( 7 2 x 2 − 49 3 x + 343 2 ) e 4 x
The general solution of the homogeneous equation is
y = y c + y p y=y_c+y_p y = y c + y p
= C 1 e − 3 x + C 2 x e − 3 x + ( 2 7 x 2 − 3 49 x + 2 343 ) e 4 x =C_1e^{-3x}+C_2xe^{-3x}+\big(\dfrac{2}{7}x^2-\dfrac{3}{49}x+\dfrac{2}{343}\big)e^{4x} = C 1 e − 3 x + C 2 x e − 3 x + ( 7 2 x 2 − 49 3 x + 343 2 ) e 4 x
Comments