Answer to Question #197054 in Differential Equations for Rabia

Question #197054

Show that the functions defined below is solution of the Differential Equations or not

a)𝑦=𝑥+3𝑒−𝑥, 𝑦′+𝑦=𝑥+1,𝑤h𝑒𝑟𝑒 𝑦′=𝑑𝑦 𝑑𝑥

b)𝑦=2𝑥2 +𝑒𝑥 +6𝑥+7, 𝑦′′ −3𝑦′ +2𝑦=4𝑥2 c)𝑦= 1 , (1+𝑥2)𝑦′′+4𝑥𝑦′+2𝑦=0

d) 𝑢 = 𝑒3𝑥 cos 2𝑦 , 𝑢𝑥𝑥 − 2 𝑢𝑦𝑦 = 17 𝑢 , 𝑢𝑥𝑥 = 𝑑2𝑢 𝑑𝑥2


1
Expert's answer
2021-05-25T15:51:45-0400

(a) y=x+3exy=x+3e^{-x}

y=13ex\Rightarrow y'=1-3e^{-x}


Taking LHS-

y+y=13x+1+3x=2y'+y=1-3^{-x}+1+3^{-x}=2\neq RHS


Given y is not the solution.


(b) y=2x2+ex+6x+7y=2x^2+e^x+6x+7


y=4x+ex+6y=4+ex\Rightarrow y'=4x+e^x+6\\[9pt]\Rightarrow y''=4+e^x


Taking LHS-

y3y+2y=4+ex12x3ex18+2x2+ex+6x+7=ex+2x26x+11RHSy''-3y'+2y\\=4+e^x-12x-3e^x-18+2x^2+e^x+6x+7\\=-e^x+2x^2-6x+11\neq RHS


Given y is not the solution.


(c)𝑦= 1 , (1+𝑥2)𝑦+4𝑥𝑦+2𝑦=0(1+𝑥^2)𝑦''+4𝑥𝑦'+2𝑦=0

As, y=1

y=0,y=0\Rightarrow y'=0,y''=0


Taking LHS-

(1+𝑥2)𝑦′′+4𝑥𝑦+2𝑦=(1+x2)0+4x(0)+2(1)=2RHS(1+𝑥^2)𝑦′′+4𝑥𝑦′+2𝑦\\=(1+x^2)0+4x(0)+2(1)\\=2\neq RHS


Hence y=1 is not the solution.


(d)

𝑢=𝑒3𝑥cos2𝑦ux=3e3xcos2yuxx=9e3xcos2y𝑢 = 𝑒^{3𝑥} cos 2𝑦\\[9pt]\Rightarrow u_x=3e^{3x}cos2y\\[9pt]\Rightarrow u_{xx}=9e^{3x}cos2y


uy=2e3xsin2yuyy=4e3xcos2y\Rightarrow u_y=-2e^{3x}sin2y\\[9pt]\Rightarrow u_{yy}=-4e^{3x}cos2y


Taking LHS-

𝑢𝑥𝑥2𝑢𝑦𝑦=9e3xcos2y+8e3xcos2y=17e3xcos2y=17u=RHS𝑢_{𝑥𝑥} − 2 𝑢_{𝑦𝑦}\\=9e^{3x}cos2y+8e^{3x}cos2y\\=17e^{3x}cos2y=17u=RHS


Given y is the solution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment