(a) y=x+3e−x
⇒y′=1−3e−x
Taking LHS-
y′+y=1−3−x+1+3−x=2= RHS
Given y is not the solution.
(b) y=2x2+ex+6x+7
⇒y′=4x+ex+6⇒y′′=4+ex
Taking LHS-
y′′−3y′+2y=4+ex−12x−3ex−18+2x2+ex+6x+7=−ex+2x2−6x+11=RHS
Given y is not the solution.
(c)𝑦= 1 , (1+x2)y′′+4xy′+2y=0
As, y=1
⇒y′=0,y′′=0
Taking LHS-
(1+x2)y′′+4xy′+2y=(1+x2)0+4x(0)+2(1)=2=RHS
Hence y=1 is not the solution.
(d)
u=e3xcos2y⇒ux=3e3xcos2y⇒uxx=9e3xcos2y
⇒uy=−2e3xsin2y⇒uyy=−4e3xcos2y
Taking LHS-
uxx−2uyy=9e3xcos2y+8e3xcos2y=17e3xcos2y=17u=RHS
Given y is the solution.
Comments
Leave a comment