Show that the functions defined below is solution of the Differential Equations or not
a)π¦=π₯+3πβπ₯, π¦β²+π¦=π₯+1,π€hπππ π¦β²=ππ¦ ππ₯
b)π¦=2π₯2 +ππ₯ +6π₯+7, π¦β²β² β3π¦β² +2π¦=4π₯2 c)π¦= 1 , (1+π₯2)π¦β²β²+4π₯π¦β²+2π¦=0
d) π’ = π3π₯ cos 2π¦ , π’π₯π₯ β 2 π’π¦π¦ = 17 π’ , π’π₯π₯ = π2π’ ππ₯2
(a) "y=x+3e^{-x}"
"\\Rightarrow y'=1-3e^{-x}"
Taking LHS-
"y'+y=1-3^{-x}+1+3^{-x}=2\\neq" RHS
Given y is not the solution.
(b) "y=2x^2+e^x+6x+7"
"\\Rightarrow y'=4x+e^x+6\\\\[9pt]\\Rightarrow y''=4+e^x"
Taking LHS-
"y''-3y'+2y\\\\=4+e^x-12x-3e^x-18+2x^2+e^x+6x+7\\\\=-e^x+2x^2-6x+11\\neq RHS"
Given y is not the solution.
(c)π¦= 1 , "(1+\ud835\udc65^2)\ud835\udc66''+4\ud835\udc65\ud835\udc66'+2\ud835\udc66=0"
As, y=1
"\\Rightarrow y'=0,y''=0"
Taking LHS-
"(1+\ud835\udc65^2)\ud835\udc66\u2032\u2032+4\ud835\udc65\ud835\udc66\u2032+2\ud835\udc66\\\\=(1+x^2)0+4x(0)+2(1)\\\\=2\\neq RHS"
Hence y=1 is not the solution.
(d)
"\ud835\udc62 = \ud835\udc52^{3\ud835\udc65} cos 2\ud835\udc66\\\\[9pt]\\Rightarrow u_x=3e^{3x}cos2y\\\\[9pt]\\Rightarrow u_{xx}=9e^{3x}cos2y"
"\\Rightarrow u_y=-2e^{3x}sin2y\\\\[9pt]\\Rightarrow u_{yy}=-4e^{3x}cos2y"
Taking LHS-
"\ud835\udc62_{\ud835\udc65\ud835\udc65} \u2212 2 \ud835\udc62_{\ud835\udc66\ud835\udc66}\\\\=9e^{3x}cos2y+8e^{3x}cos2y\\\\=17e^{3x}cos2y=17u=RHS"
Given y is the solution.
Comments
Leave a comment