Solve the initial-value problem
1. y" - 3y' - 10y = 0, y(0) = 0, y'(0) = 7.
2. y"+14y' + 50y = 0,y(0) = 2, y'(0) = -17
3. 6y"-y'-y = 0, y(0) = 10, y'(0) = 0
4. 6y"+y'-y = 0, y(0) = -1, y'(0) = 3
1.
"k^2-3k-10=0"
"k=\\frac{3\\pm \\sqrt{9+40}}{2}"
"k_1=-2,k_2=5"
"y=c_1e^{-2x}+c_2e^{5x}"
"0=c_1+c_2"
"y'=-2c_1e^{-2x}+5c_2e^{5x}"
"7=-2c_1+5c_2"
"2c_2+5c_2=7"
"c_2=1,c_1=-1"
"y=-e^{-2x}+e^{5x}"
2.
"k^2+14k+50=0"
"k=\\frac{-14\\pm \\sqrt{196-200}}{2}"
"k_{1,2}=\\frac{-14\\pm 2i}{2}=-7\\pm i"
"y=e^{-7x}(c_1cosx+c_2sinx)"
"2=c_1"
"y'=-7e^{-7x}(c_1cosx+c_2sinx)+e^{-7x}(c_2cosx-c_1sinx)"
"-17=-7c_1+c_2"
"c_2=-3"
"y=e^{-7x}(2cosx-3sinx)"
3.
"6k^2-k-1=0"
"k=\\frac{1\\pm \\sqrt{1+24}}{12}"
"k_1=-\\frac{1}{3},k_2=\\frac{1}{2}"
"y=c_1e^{-x\/3}+c_2e^{x\/2}"
"10=c_1+c_2"
"y'=-\\frac{c_1e^{-x\/3}}{3}+\\frac{c_2e^{x\/2}}{2}"
"0=-c_1\/3+c_2\/2"
"\\frac{c_2-10}{3}+\\frac{c_2}{2}=0"
"c_2=4,c_1=6"
"y=6e^{-x\/3}+4e^{x\/2}"
4.
"6k^2+k-1=0"
"k=\\frac{-1\\pm \\sqrt{1+24}}{12}"
"k_1=-\\frac{1}{2},k_2=\\frac{1}{3}"
"y=c_1e^{-x\/2}+c_2e^{x\/3}"
"-1=c_1+c_2"
"y'=-\\frac{c_1e^{-x\/2}}{2}+\\frac{c_2e^{x\/3}}{3}"
"3=-\\frac{c_1}{2}+\\frac{c_2}{3}"
"3(c_2+1)+2c_2=18"
"c_2=3,c_1=-4"
"y=-4e^{-x\/2}+3e^{x\/3}"
Comments
Leave a comment