1.
k2−3k−10=0
k=23±9+40
k1=−2,k2=5
y=c1e−2x+c2e5x
0=c1+c2
y′=−2c1e−2x+5c2e5x
7=−2c1+5c2
2c2+5c2=7
c2=1,c1=−1
y=−e−2x+e5x
2.
k2+14k+50=0
k=2−14±196−200
k1,2=2−14±2i=−7±i
y=e−7x(c1cosx+c2sinx)
2=c1
y′=−7e−7x(c1cosx+c2sinx)+e−7x(c2cosx−c1sinx)
−17=−7c1+c2
c2=−3
y=e−7x(2cosx−3sinx)
3.
6k2−k−1=0
k=121±1+24
k1=−31,k2=21
y=c1e−x/3+c2ex/2
10=c1+c2
y′=−3c1e−x/3+2c2ex/2
0=−c1/3+c2/2
3c2−10+2c2=0
c2=4,c1=6
y=6e−x/3+4ex/2
4.
6k2+k−1=0
k=12−1±1+24
k1=−21,k2=31
y=c1e−x/2+c2ex/3
−1=c1+c2
y′=−2c1e−x/2+3c2ex/3
3=−2c1+3c2
3(c2+1)+2c2=18
c2=3,c1=−4
y=−4e−x/2+3ex/3
Comments