Answer to Question #196721 in Differential Equations for Helena Lope

Question #196721

Solve the initial-value problem


1. y" - 3y' - 10y = 0, y(0) = 0, y'(0) = 7.


2. y"+14y' + 50y = 0,y(0) = 2, y'(0) = -17


3. 6y"-y'-y = 0, y(0) = 10, y'(0) = 0


4. 6y"+y'-y = 0, y(0) = -1, y'(0) = 3


1
Expert's answer
2021-05-24T12:32:50-0400

1.

"k^2-3k-10=0"

"k=\\frac{3\\pm \\sqrt{9+40}}{2}"

"k_1=-2,k_2=5"

"y=c_1e^{-2x}+c_2e^{5x}"

"0=c_1+c_2"

"y'=-2c_1e^{-2x}+5c_2e^{5x}"

"7=-2c_1+5c_2"

"2c_2+5c_2=7"

"c_2=1,c_1=-1"

"y=-e^{-2x}+e^{5x}"


2.

"k^2+14k+50=0"

"k=\\frac{-14\\pm \\sqrt{196-200}}{2}"

"k_{1,2}=\\frac{-14\\pm 2i}{2}=-7\\pm i"

"y=e^{-7x}(c_1cosx+c_2sinx)"

"2=c_1"

"y'=-7e^{-7x}(c_1cosx+c_2sinx)+e^{-7x}(c_2cosx-c_1sinx)"

"-17=-7c_1+c_2"

"c_2=-3"

"y=e^{-7x}(2cosx-3sinx)"


3.

"6k^2-k-1=0"

"k=\\frac{1\\pm \\sqrt{1+24}}{12}"

"k_1=-\\frac{1}{3},k_2=\\frac{1}{2}"

"y=c_1e^{-x\/3}+c_2e^{x\/2}"

"10=c_1+c_2"

"y'=-\\frac{c_1e^{-x\/3}}{3}+\\frac{c_2e^{x\/2}}{2}"

"0=-c_1\/3+c_2\/2"

"\\frac{c_2-10}{3}+\\frac{c_2}{2}=0"

"c_2=4,c_1=6"

"y=6e^{-x\/3}+4e^{x\/2}"


4.

"6k^2+k-1=0"

"k=\\frac{-1\\pm \\sqrt{1+24}}{12}"

"k_1=-\\frac{1}{2},k_2=\\frac{1}{3}"

"y=c_1e^{-x\/2}+c_2e^{x\/3}"

"-1=c_1+c_2"

"y'=-\\frac{c_1e^{-x\/2}}{2}+\\frac{c_2e^{x\/3}}{3}"

"3=-\\frac{c_1}{2}+\\frac{c_2}{3}"

"3(c_2+1)+2c_2=18"

"c_2=3,c_1=-4"

"y=-4e^{-x\/2}+3e^{x\/3}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS