Question #196721

Solve the initial-value problem


1. y" - 3y' - 10y = 0, y(0) = 0, y'(0) = 7.


2. y"+14y' + 50y = 0,y(0) = 2, y'(0) = -17


3. 6y"-y'-y = 0, y(0) = 10, y'(0) = 0


4. 6y"+y'-y = 0, y(0) = -1, y'(0) = 3


1
Expert's answer
2021-05-24T12:32:50-0400

1.

k23k10=0k^2-3k-10=0

k=3±9+402k=\frac{3\pm \sqrt{9+40}}{2}

k1=2,k2=5k_1=-2,k_2=5

y=c1e2x+c2e5xy=c_1e^{-2x}+c_2e^{5x}

0=c1+c20=c_1+c_2

y=2c1e2x+5c2e5xy'=-2c_1e^{-2x}+5c_2e^{5x}

7=2c1+5c27=-2c_1+5c_2

2c2+5c2=72c_2+5c_2=7

c2=1,c1=1c_2=1,c_1=-1

y=e2x+e5xy=-e^{-2x}+e^{5x}


2.

k2+14k+50=0k^2+14k+50=0

k=14±1962002k=\frac{-14\pm \sqrt{196-200}}{2}

k1,2=14±2i2=7±ik_{1,2}=\frac{-14\pm 2i}{2}=-7\pm i

y=e7x(c1cosx+c2sinx)y=e^{-7x}(c_1cosx+c_2sinx)

2=c12=c_1

y=7e7x(c1cosx+c2sinx)+e7x(c2cosxc1sinx)y'=-7e^{-7x}(c_1cosx+c_2sinx)+e^{-7x}(c_2cosx-c_1sinx)

17=7c1+c2-17=-7c_1+c_2

c2=3c_2=-3

y=e7x(2cosx3sinx)y=e^{-7x}(2cosx-3sinx)


3.

6k2k1=06k^2-k-1=0

k=1±1+2412k=\frac{1\pm \sqrt{1+24}}{12}

k1=13,k2=12k_1=-\frac{1}{3},k_2=\frac{1}{2}

y=c1ex/3+c2ex/2y=c_1e^{-x/3}+c_2e^{x/2}

10=c1+c210=c_1+c_2

y=c1ex/33+c2ex/22y'=-\frac{c_1e^{-x/3}}{3}+\frac{c_2e^{x/2}}{2}

0=c1/3+c2/20=-c_1/3+c_2/2

c2103+c22=0\frac{c_2-10}{3}+\frac{c_2}{2}=0

c2=4,c1=6c_2=4,c_1=6

y=6ex/3+4ex/2y=6e^{-x/3}+4e^{x/2}


4.

6k2+k1=06k^2+k-1=0

k=1±1+2412k=\frac{-1\pm \sqrt{1+24}}{12}

k1=12,k2=13k_1=-\frac{1}{2},k_2=\frac{1}{3}

y=c1ex/2+c2ex/3y=c_1e^{-x/2}+c_2e^{x/3}

1=c1+c2-1=c_1+c_2

y=c1ex/22+c2ex/33y'=-\frac{c_1e^{-x/2}}{2}+\frac{c_2e^{x/3}}{3}

3=c12+c233=-\frac{c_1}{2}+\frac{c_2}{3}

3(c2+1)+2c2=183(c_2+1)+2c_2=18

c2=3,c1=4c_2=3,c_1=-4

y=4ex/2+3ex/3y=-4e^{-x/2}+3e^{x/3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS