Identify the type of equations and Solve
a) π¦β² = π₯π¦ 1+π₯2
b) sin π¦ ππ₯ + cos π¦ ππ¦ = 0
c) ππ¦ = 2π‘ (π¦2 + 9 )ππ‘
"a)\\newline\n \ud835\udc66\u2032 = \\frac{\ud835\udc65\ud835\udc66}{1+\ud835\udc65^2}\\newline\n\\text{This linear ordinary Differential equation.}\\newline\\text{\nSolving the given differential equation by variable separable form,}\\newline\n \\frac{dy}{y}= \\frac{\ud835\udc65}{1+\ud835\udc65^2}dx\\newline\n\\text{\nIntegrate both side,}\\newline\n\\int\\frac{dy}{y}= \\frac{1}{2}\\int\\frac{2\ud835\udc65}{1+\ud835\udc65^2}dx\\newline\nlny= \\frac{1}{2}ln(1+x^2)+c\\newline\n\n\nb)\\newline\n sin \ud835\udc66 \ud835\udc51\ud835\udc65 + cos \ud835\udc66 \ud835\udc51\ud835\udc66 = 0\\newline\\text{\nThis linear ordinary Differential equation}.\\newline\\text{\nSolving the given differential equation by variable separable form,}\\newline\n \\frac{cosy}{siny}dy= -dx\\newline\\text{\nIntegrate both side,}\\newline\n\\int\\frac{cosy}{siny}dy= -\\int dx\\newline\nlnsiny=-x+c\n\\newline\nc)\\newline\n \ud835\udc51\ud835\udc66 = 2\ud835\udc61 (\ud835\udc66^2 + 9 )\ud835\udc51\ud835\udc61\\newline\\text{\nThis linear ordinary Differential equation}.\\newline\\text{\nSolving the given differential equation by variable separable form,}\\newline\n\ud835\udc51\ud835\udc66 = 2\ud835\udc61 (\ud835\udc66^2 + 9 )\ud835\udc51\ud835\udc61\\newline\n \\frac{1}{3^2+y^2}dy= 2tdt\\newline\n\\frac{1}{9} \\frac{1}{1+(\\frac{y}{3})^2}dy= 2tdt\\newline\\text{\nIntegrate both side,}\\newline\n\\frac{1}{9}\\int \\frac{1}{1+(\\frac{y}{3})^2}dy= 2\\int tdt\\newline\n\\frac{1}{3} tan^{-1}(\\frac{y}{3})= t^2+c\\newline"
Comments
Leave a comment